
ABL Error Handling

Copyright

© 2020 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

These materials and all Progress
®

 software products are copyrighted and all rights are reserved by Progress
Software Corporation. The information in these materials is subject to change without notice, and Progress
Software Corporation assumes no responsibility for any errors that may appear therein. The references in
these materials to specific platforms supported are subject to change.

Corticon, DataDirect (and design), DataDirect Cloud, DataDirect Connect, DataDirect Connect64, DataDirect
XML Converters, DataDirect XQuery, DataRPM, Defrag This, Deliver More Than Expected, Icenium, Ipswitch,
iMacros, Kendo UI, Kinvey, MessageWay, MOVEit, NativeChat, NativeScript, OpenEdge, Powered by Progress,
Progress, Progress Software Developers Network, SequeLink, Sitefinity (and Design), Sitefinity, SpeedScript,
Stylus Studio, TeamPulse, Telerik, Telerik (and Design), Test Studio, WebSpeed, WhatsConfigured,
WhatsConnected, WhatsUp, and WS_FTP are registered trademarks of Progress Software Corporation or one
of its affiliates or subsidiaries in the U.S. and/or other countries. Analytics360, AppServer, BusinessEdge,
DataDirect Autonomous REST Connector, DataDirect Spy, SupportLink, DevCraft, Fiddler, iMail, JustAssembly,
JustDecompile, JustMock, NativeScript Sidekick, OpenAccess, ProDataSet, Progress Results, Progress
Software, ProVision, PSE Pro, SmartBrowser, SmartComponent, SmartDataBrowser, SmartDataObjects,
SmartDataView, SmartDialog, SmartFolder, SmartFrame, SmartObjects, SmartPanel, SmartQuery, SmartViewer,
SmartWindow, and WebClient are trademarks or service marks of Progress Software Corporation and/or its
subsidiaries or affiliates in the U.S. and other countries. Java is a registered trademark of Oracle and/or its
affiliates. Any other marks contained herein may be trademarks of their respective owners.

February 2019

Last updated with new content: Release 12.0

Updated: 2020/03/05

3OpenEdge Development: ABL Error Handling: Version 12.2

OpenEdge Development: ABL Error Handling: Version 12.24

Copyright

Table of Contents

Preface..7

Introduction to Error and Condition Handling..11
ABL conditions..11

ABL condition handling...13

Terminology..13

Default Condition Handling...15
Understand OpenEdge messages...16

Progress messages (promsgs) file..16

Understand the UNDO concept..16

Branch options..17

Usage of NO-ERROR...19
NO-ERROR behavior...19

Precedence of NO-ERROR..20

Use NO-ERROR to trap a thrown object..20

UNDO and scope using NO-ERROR...21

Handle the error..21

Handle warnings...22

Incorrect use of NO-ERROR..23

Block Flow of Control and Condition Directives.......................................25
ON phrase syntax...27

Usage of labels...29

Precedence of the ON phrase..30

Examples using ON ERROR..30

Use UNDO, THROW...31

BLOCK-LEVEL ON ERROR UNDO, THROW statement..32

ROUTINE-LEVEL ON ERROR UNDO, THROW statement...33

-undothrow startup parameter...34

Determine error-handling characteristics of r-code..35

ON phrases and STOP conditions..36

Throw error and stop objects from an application server to an ABL client...36

ERROR and STOP Classes...37

5OpenEdge Development: ABL Error Handling: Version 12.2

Contents

Progress.Lang.Error interface...39

Progress.Lang.ProError class...40

Progress.Lang.SysError class..40

Progress.Lang.StopError class...40

Progress.Lang.SoapFaultError class..40

Progress.Lang.Stop class...41

Progress.Lang.StopAfter class...41

Progress.Lang.UserInterrupt class...41

Progress.Lang.LockConflict class...42

Progress.Lang.AppError class..42

AppError Constructors...43

.NET exceptions...45

Enable stack tracing with error objects...45

Raise Conditions..47
Raise errors with UNDO, THROW..48

RETURN ERROR...49

Raise ERROR to the caller of a user-defined function...51

Throw a condition out of a destructor...52

Raise the QUIT condition...53

Raise the STOP condition..53

Raise a timed STOP condition..54

Throw error and stop objects from an application server to an ABL client...54

CATCH Blocks..57
Introduction to CATCH blocks...58

CATCH block syntax and usage...59

Blocks that support CATCH blocks...62

Precedence of CATCH blocks..62

UNDO scope and relationship to a CATCH block...63

CATCH blocks within CATCH blocks..65

FINALLY Blocks..67
Introduction to FINALLY blocks...67

FINALLY block syntax and usage...68

UNDO scope and relationship to a FINALLY block...68

Examples using FINALLY blocks..69

FINALLY blocks and STOP-AFTER..71

Conflicts between the associated and FINALLY blocks..71

OpenEdge Development: ABL Error Handling: Version 12.26

Contents

Preface

Purpose
This programming guide contains information for handling ABL conditions (also known as errors or
exceptions). Conditions are run-time occurrences that interrupt the usual flow of a software application. In
ABL conditions include ERROR, STOP, QUIT, and ENDKEY, all of which are ABL keywords.

Audience
This guide is intended for all ABL programmers. To understand the material, you should be familiar with the
following ABL topics:

• Procedure files (.p), internal procedures, and user-defined functions

• Blocks and block properties

• Transactions

• Built-in system objects, attributes, and methods

Organization
This guide is organized into the following sections:

Introduction to Error and Condition Handling on page 11

Provides an overview of the terminology used for ABL errors/conditions/exceptions, and the constructs for
handling them.

Default Condition Handling on page 15

Describes the default behavior when an error, or condition, occurs.

Usage of NO-ERROR on page 19

Describes how and why to use the NO-ERROR option on an ABL statement.

Block Flow of Control and Condition Directives on page 25

Documents the use of the ON phrase for altering the default error handling.

7OpenEdge Development: ABL Error Handling: Version 12.2

ERROR and STOP Classes on page 37

Describes the hierarchy of built-in ABL classes that represent ERROR and STOP conditions.

Raise Conditions on page 47

Discusses ABL constructs for raising conditions programmatically.

CATCH Blocks on page 57

Provides in-depth information on using CATCH blocks to handle errors.

FINALLY Blocks on page 67

Describes how to use the FINALLY block for end-of-block processing.

Documentation conventions
See Documentation Conventions for an explanation of the terminology, format, and typographical conventions
used throughout the OpenEdge content library.

Purpose
This programming guide contains information for handling ABL conditions (also known as errors or
exceptions). Conditions are run-time occurrences that interrupt the usual flow of a software application. In
ABL conditions include ERROR, STOP, QUIT, and ENDKEY, all of which are ABL keywords.

Audience
This guide is intended for all ABL programmers. To understand the material, you should be familiar with the
following ABL topics:

• Procedure files (.p), internal procedures, and user-defined functions

• Blocks and block properties

• Transactions

• Built-in system objects, attributes, and methods

Organization
This guide is organized into the following sections:

Introduction to Error and Condition Handling on page 11

Provides an overview of the terminology used for ABL errors/conditions/exceptions, and the constructs for
handling them.

Default Condition Handling on page 15

Describes the default behavior when an error, or condition, occurs.

Usage of NO-ERROR on page 19

Describes how and why to use the NO-ERROR option on an ABL statement.

Block Flow of Control and Condition Directives on page 25

Documents the use of the ON phrase for altering the default error handling.

ERROR and STOP Classes on page 37

Describes the hierarchy of built-in ABL classes that represent ERROR and STOP conditions.

Raise Conditions on page 47

Discusses ABL constructs for raising conditions programmatically.

OpenEdge Development: ABL Error Handling: Version 12.28

Preface

https://docs.progress.com/bundle/doc-conventions/page/Documentation-Conventions.html

CATCH Blocks on page 57

Provides in-depth information on using CATCH blocks to handle errors.

FINALLY Blocks on page 67

Describes how to use the FINALLY block for end-of-block processing.

Documentation conventions
See Documentation Conventions for an explanation of the terminology, format, and typographical conventions
used throughout the OpenEdge content library.

9OpenEdge Development: ABL Error Handling: Version 12.2

Preface

https://docs.progress.com/bundle/doc-conventions/page/Documentation-Conventions.html

OpenEdge Development: ABL Error Handling: Version 12.210

Preface

1
Introduction to Error and Condition Handling

Run-time occurrences that interrupt the usual flow of a software application are called conditions, errors, or
exceptions. Condition handling, error handling, and exception handling are industry terms, sometimes used
interchangeably, for programming designed to respond to those run-time interruptions. Since most condition
handling in ABL involves the ERROR condition, error handling has become a common synonym for condition
handling and is used frequently in the OpenEdge documentation set.

For details, see the following topics:

• ABL conditions

• ABL condition handling

• Terminology

ABL conditions
Generally speaking, a condition differs from other run-time events in that it is unexpected and requires a
response to restore application flow. In ABL, a condition always invokes a default response, which is called
default error handling.

Note: An ERROR is the most common type of condition, which is why condition handling is usually referred
to as error handling in ABL documentation.

Default error handling protects your database while also providing branching options to restore application
flow.You design your ABL application to accept default error handling, or to replace it with custom error handling.

ABL recognizes these four conditions, all of which are keywords:

11OpenEdge Development: ABL Error Handling: Version 12.2

• ERROR

An ERROR occurs when:

• The AVM fails to execute an ABL statement. For example, if a FIND statement fails to find a matching
record, then the statement fails. These failures are detected at run time by the AVM which then raises
the ERROR condition. These errors are known as system errors. A system error is associated with a
number and a descriptive message.

• Your application executes the RETURN ERROR statement or throws an instance of
Progress.Lang.AppError. An error raised in this way is called an application error.

• An application uses the APPLY "ERROR" statement. This is considered outdated functionality.

In all cases, when an error condition is raised in a block with error handling, it is not raised again beyond
that block unless some ABL code explicitly instructs the AVM to do so. In other words, the default is that
errors are local and are not propagated beyond the current block context.

• STOP

The STOP condition represents a more serious condition and occurs when:

• The AVM encounters a system error that is deemed more serious or unrecoverable. For example, if the
AVM detects a lost database connection, the AVM raises the STOP condition.

• Your application executes a STOP statement.

• An application user presses the key mapped to the STOP key code when input is enabled. By default,
this is CTRL+C on Unix/Linux or CTRL+Break in Windows.

• The specified time has expired when using a STOP-AFTER phrase on a block.

• A record lock conflict occurs and the user either cancels out of the ensuing record lock conflict dialog,
or there is no user response (including in batch mode) within the time specified by the -lkwtmo startup
parameter.

In all cases, when a STOP condition is raised in a block, it is then raised again in all blocks up the call stack
unless it is handled by explicit ABL code. In other words, the default is that STOP conditions propagate up
the call stack indefinitely until the application ends. In addition, there are a few cases where the AVM ignores
explicit attempts to handle a STOP condition, until either the current transaction is over or until the AVM has
returned up past the code layer that accesses the database, depending on the condition.

• QUIT

The QUIT condition only occurs when your application executes a QUIT statement. It causes any open
transaction to be committed and the AVM session to terminate. As the AVM unwinds the stack, the QUIT
condition is in effect.

• ENDKEY

The ENDKEY condition occurs when:

• An application user presses a key that is mapped to the ENDKEY key code (typically ESC) when input
is enabled. This has different default behavior depending on the context. For example, it may back out
editing entered by a user in an ABL widget, or it may close the current window if no editing is taking
place.This style of user interface was designed for character mode applications and is no longer relevant
to most modern applications.

• The application reaches the end of an input stream.

OpenEdge Development: ABL Error Handling: Version 12.212

Chapter 1: Introduction to Error and Condition Handling

ABL condition handling
Default condition handling exists for any condition that occurs in an application.This is explained in more detail
in Default Condition Handling on page 15. However for most applications, the default handling does not provide
the most desirable way to control program flow or show error messages in a user-friendly manner. Therefore,
most applications customize how conditions are handled.

Below is a summary of the various ABL constructs that can be used to customize condition handling. Each is
discussed in more detail in later sections.

• The NO-ERROR keyword — This is useful when an error is expected on a single statement and there is a
specific programmatic way of handling it.

• The ON phrase on a block — This includes ON ERROR, ON STOP, ON QUIT, and ON ENDKEY. These are
used to determine program flow after an unexpected condition, or to throw the condition to a higher level
to be handled there.

• CATCH blocks — This is the most desirable way to deal with unexpected ERROR and STOP conditions. It
gives the program access to error information so that it can be reported in a customized way.

• Error objects — The ABL provides a set of built-in objects representing ERROR or STOP conditions, which
can be caught. In addition, applications can create their own application error objects that can be thrown
and may provide extra contextual information.

• The UNDO, THROW statement — This is a way to rethrow a caught error or stop object, or throw an application
error object.

• FINALLY blocks — This is not specifically about handling conditions. However, it allows you to write code
that always runs at the end of a block, whether a condition occurs in that block or not.

Terminology
The original ABL condition handling model consisted of the following subset of the existing error handling
constructs:

• NO-ERROR

• The ON phrase (flow of control directives), but without the THROW option

• RETURN ERROR

These constructs are referred to as Traditional Error Handling.

In more recent OpenEdge versions, more modern error handling constructs were added. These consist of:

• CATCH blocks

• The ON THROW directive

• The UNDO, THROW statement

• Error and Stop objects

• FINALLY blocks

These constructs are referred to collectively as Structured Error Handling.

13OpenEdge Development: ABL Error Handling: Version 12.2

ABL condition handling

These two models are not independent of each other. All constructs work seamlessly together, and in some
cases, depend on each other for context.

OpenEdge Development: ABL Error Handling: Version 12.214

Chapter 1: Introduction to Error and Condition Handling

2
Default Condition Handling

The default for handling conditions in ABL is simple. It is scoped to blocks. Several things happen when an
error occurs, when not explicitly handled by some ABL construct such as NO-ERROR or CATCH:

1. If there is any error message associated with the condition, it is displayed to the current output device. For
an application server, the message is written to the application server log.

2. The current block is undone. If the condition occurred in an iterating block, it is only the current block iteration
that is undone.

3. Any statements following the line where the condition occurred are not executed. Program flow continues
based on the default branching option for the block type.

Note: If there is a FINALLY block associated with the current block, it still runs even though an ERROR or
STOP condition occurred. For more information see FINALLY Blocks on page 67.

4. For a STOP condition, STOP is raised again in the outer block, if there is one, otherwise it is raised in the
caller. From there the same actions (1-4) are taken with respect to the new current block.

For details, see the following topics:

• Understand OpenEdge messages

• Understand the UNDO concept

• Branch options

15OpenEdge Development: ABL Error Handling: Version 12.2

Understand OpenEdge messages
Many error messages are generated by the AVM itself.These run-time system error messages give information
about what failed when an ERROR or STOP condition is raised. Error messages can also be specified by the
application itself. For the remainder of this document, the term error message refers to either an OpenEdge
system error message (execution message), or a user-defined application error message. However, this section
specifically discusses what is in a system error message.

An OpenEdge error is associated with an error string and an error number, as shown in the following example:

Error string (Error number)

**FIND FIRST/LAST failed for table Customer (565)

In this example, "**FIND FIRST/LAST failed for table Customer" is the error string, and "565" is the error number.
In OpenEdge documentation, the term error message refers to the error string and error number together.

To see additional information for obtaining specific error messages through the Help system see OpenEdge
messages.

Progress messages (promsgs) file

The OpenEdge platform stores its messages in a promsgs (Progress messages) file. The promsgs file is
available in multiple languages. Setup options for this file are described in Configure OpenEdge.You can find
information on translation and localization of promsgs files in Internationalize ABL Applications.

Understand the UNDO concept
The ABL UNDO action ensures pending changes to persistent data (database fields) are not committed to a
database after an ERROR or STOP condition occurs. Because ABL is transaction-oriented, a set of pending
changes is equivalent to an open (current) transaction or subtransaction. Undoing is essentially throwing away
the current transaction or subtransaction.

ABL also extends UNDO protection to non persistent data like variables and temp-table fields. By default, ABL
makes variables and temp-table fields undoable. If changes to undoable variable data occur in a block, the
AVM undoes changes to these variables and fields, but only if this block is a transaction block.

A block is a transaction block if it contains one of the following statements with a reference to a database field:

• CREATE

• DELETE

• ASSIGN (and the = operator)

• INSERT

• SET

• UPDATE

OpenEdge Development: ABL Error Handling: Version 12.216

Chapter 2: Default Condition Handling

https://docs.progress.com/bundle/doc-conventions/page/Documentation-Conventions.html#Documentation-Conventions__OoenEdgeMessages
https://docs.progress.com/bundle/doc-conventions/page/Documentation-Conventions.html#Documentation-Conventions__OoenEdgeMessages

• Statements that fetch database records with EXCLUSIVE-LOCK

If the block statement uses the TRANSACTION option, it is also a transaction block. One use case for this option
is to force ABL to create a transaction for undoable variables and temp-table fields when the block does not
also update database fields.You can use the COMPILE statement listing options to see which blocks in your
code are transaction blocks.

Since providing UNDO behavior for variable and temp-table data incurs additional overhead, it's best to define
variables and temp-tables fields with the NO-UNDO option when possible. With the NO-UNDO option, the AVM
does not allocate the resources needed to track changes, and any UNDO action ignores the NO-UNDO data
items.

Actions other than changes to database fields, undoable variables, and temp-table fields are not affected. For
example, if you opened a file or a query within the block, undoing the block does not return the file or query to
its closed state.

Note: This introduction to UNDO touches on related transaction concepts. Understanding transactions is an
important prerequisite to understanding default error handling.Transaction information in this section describes
some default transaction behavior and presumes simple use cases.You should have a good understanding
of how to define transactions and subtransactions to accurately model your business logic before continuing.
For more information, see the section on managing transactions in Develop ABL Applications.

Branch options
After a block performs its UNDO operation, the AVM must determine what action to take next. ABL has the
following set of branching (flow of control) options:

• RETRY — If a block is an iterating block, the RETRY action repeats the iteration of the block. RETRY is useful
when you want to give your users another chance to input correct data.

• LEAVE — Indicates that the AVM should exit the block and resume execution with the next statement.

• NEXT — Indicates that the AVM should exit the current iteration of a block and continue with the next iteration.
If there is not another iteration, then NEXT is the same as LEAVE.

• RETURN — Indicates that the AVM should exit the block and immediately exit the current routine. Execution
resumes in the caller. If no caller exists, then the application terminates. The RETURN statement has many
options and is discussed from an error handling perspective in RETURN ERROR on page 49.

• THROW — Indicates that the AVM should capture any error message in an error or stop object, exit the block,
and raise the same condition again in the next enclosing block, if there is one, otherwise in the caller. The
thrown object is then available in the outer block to be handled there.

Each block type has default branching behavior. The following table lists the default action by block type and
by context.

Table 1: Default branching for ERROR conditions

Action otherwiseAction if user input
detected

Block Type

LEAVERETRYDO TRANSACTION

NEXTRETRYFOR EACH

17OpenEdge Development: ABL Error Handling: Version 12.2

Branch options

Action otherwiseAction if user input
detected

Block Type

LEAVERETRYREPEAT

THROWTHROWCATCH

THROWTHROWFINALLY

LEAVERETRYRoutine-level blocks (for example,
procedures, methods)

RETURN ERRORRETURN ERRORTrigger procedure file

Table 2: Default branching for STOP conditions

ActionBlock Type

LEAVEDO TRANSACTION

LEAVEFOR EACH

LEAVEREPEAT

LEAVECATCH

LEAVEFINALLY

LEAVERoutine-level blocks (for example, procedures,
methods)

LEAVETrigger procedure file

For STOP conditions, the block action is to leave, but the condition is raised again in the outer, or calling block,
by default. Even though the condition is raised again, this is not the same thing as a THROW. With THROW, the
error message is trapped in an object and is only displayed if you catch it and display the message itself, or if
the error raised at the outer/upper level is not handled or thrown again. It is not displayed at the statement
where the error occurred. For STOP, the default is to display any error message immediately, leave the block,
and raise the condition again in the outer/upper block. The message is only displayed once at the place where
the STOP condition occurred.

OpenEdge Development: ABL Error Handling: Version 12.218

Chapter 2: Default Condition Handling

3
Usage of NO-ERROR

One way to handle an error condition is to use the NO-ERROR option on specific ABL statements. This only
applies to ERROR conditions, not to STOP or QUIT conditions. It should be used when an error might be expected
from a specific statement and you can take some programmatic action when the expected error occurs.

A common example is using NO-ERROR on the FIND statement.You might be looking for a record based on
certain criteria and there may, or may not, be any records that satisfy that criteria. If there are not, you can
modify the criteria and try the FIND again, or you can inform the user to pick a different option to search on.
In either case, there is an action to be taken based on this specific ERROR condition.

For details, see the following topics:

• NO-ERROR behavior

• Precedence of NO-ERROR

• Use NO-ERROR to trap a thrown object

• UNDO and scope using NO-ERROR

• Handle the error

• Handle warnings

• Incorrect use of NO-ERROR

NO-ERROR behavior
When an error occurs on a statement that uses the NO-ERROR option, the AVM takes the following actions:

19OpenEdge Development: ABL Error Handling: Version 12.2

• Any error messages generated by the statement are not displayed to the default output. Instead they are
redirected to a system handle called ERROR-STATUS.

The handle preserves all system error messages raised by the statement, setting the NUM-MESSAGES
attribute accordingly. The handle preserves this information only until the AVM executes another statement
with the NO-ERROR option, whether or not an error occurred on the subsequent statement.This is illustrated
further in the next section, Precedence of NO-ERROR on page 20.

• If any undo-able action has already occurred as part of the statement, that action is undone.This is discussed
in more detail in the section, UNDO and scope using NO-ERROR on page 21.

• Execution continues with the next statement.

Note: The NO-ERROR option has no effect on STOP condition handling.

Refer to the ABL Reference to see specific statements that support the NO-ERROR option.

Precedence of NO-ERROR
NO-ERROR takes precedence over any flow of control directive on the block, for example, LEAVE or THROW.
See Default Condition Handling on page 15 and Block Flow of Control and Condition Directives on page 25
for more information.

It also takes precedence over any CATCH blocks so the CATCH block does not run. See CATCH Blocks on
page 57 for more information.

In general, the AVM performs error handling using this precedence, from highest to lowest. The AVM only
abides by one of these when a condition is raised:

• Statement NO-ERROR option

• CATCH block

• Block’s ON phrase (explicit or implicit)

Use NO-ERROR to trap a thrown object
System errors may be generated directly by the AVM or they may be caught as an object and rethrown.You
can also throw an instance of a custom application error object. Both techniques are discussed in detail in
Raise Conditions on page 47.

In either case, you can choose to handle the thrown object by using NO-ERROR. Any error messages in the
object are transferred to the ERROR-STATUS system handle, the ERROR-STATUS:ERROR is set to TRUE, and
the error object instance is garbage collected. Any custom information that might have been in the error object
is lost.You can then handle the information in the same way that you would for a condition generated any other
way.

OpenEdge Development: ABL Error Handling: Version 12.220

Chapter 3: Usage of NO-ERROR

UNDO and scope using NO-ERROR
NO-ERROR is a statement-based construct. If the statement where NO-ERROR is used can update database
fields or undoable program variables (for example, the ASSIGN statement), the AVM creates a subtransaction
around the statement. This means that any modifications that occur before the error happens are undone. In
this scenario, if the statement includes an expression that contains other executable elements, like method
calls, the undoable operations performed by these elements are also undone, since they are part of the
subtransaction.

On the other hand, if the statement itself cannot make any updates to database fields or undoable program
variables, the AVM does not start a subtransaction. For example, specifying the NO-ERROR option on a RUN
statement does not have any effect on whether statements inside the procedure are undone; that is controlled
by constructs inside the procedure itself.

Similarly, the scope of the NO-ERROR option is only the current statement. It only traps information on an error
that is raised to the level of that statement. It has no effect, in terms of error message suppression, on statements
in sub-blocks that may be invoked by the statement. For example, the FIND statement in the following code
displays an error to the current output device. It is not trapped by the NO-ERROR option on the RUN statement.

RUN subProcedure NO-ERROR.

PROCEDURE subProcedure:

 /* Nonsense code raises ERROR.*/
 FIND SalesRep WHERE SalesRep.RepName = Customer.Name.
END.

Handle the error
The ERROR-STATUS system handle allows you to test whether any error occurs and whether a particular error
occurs.You can have a branch that executes for a particular error, and you can have another branch that
executes for any other error.

The attributes and methods of the handle allow you to access the error message strings and error numbers.
If specific errors are important to you, the error numbers are useful. But more often than not, you are simply
interested in whether an error occurs.

The following table describes the significant attributes and methods of the ERROR-STATUS system handle.

DescriptionAttribute or method

If the ABL statement uses the NO-ERROR option and
the AVM raises the ERROR condition, this attribute is
set to TRUE.

Some handle methods may generate an error message
but not raise ERROR. In this case the condition is
treated as a warning and the attribute remains FALSE.
However ERROR-STATUS:NUM-MESSAGES is still set
to a nonzero value. See Handle warnings on page 22
for more detail.

ERROR attribute

21OpenEdge Development: ABL Error Handling: Version 12.2

UNDO and scope using NO-ERROR

If a Web service method returns a SOAP fault, the
AVM stores the SOAP fault information in an ABL
SOAP-fault object and raises ERROR. The AVM stores
a handle reference to the SOAP-fault object in this
attribute.

ERROR-OBJECT-DETAIL attribute

Provides an integer count of all the error messages
generated by the statement with the NO-ERROR option.

NUM-MESSAGES attribute

Allows you to retrieve the specified error string. The
index runs from 1 to the value of NUM-MESSAGES.

GET-MESSAGE(index)method

Allows you to retrieve the specified error number. The
index runs from 1 to the value of NUM-MESSAGES.

GET-NUMBER(index) method

The following example illustrates using the FIND statement with NO-ERROR:

METHOD PUBLIC DECIMAL getCustomerBalance(custName AS CHAR):

 FIND FIRST Customer WHERE Customer.NAME = custName NO-ERROR.
 IF ERROR-STATUS:ERROR THEN
 RETURN ERROR. // No Customer found with that name
 ELSE
 RETURN Customer.Balance.
END.

For the FIND statement in particular, there is another way to do this. When the FIND statement fails, the buffer
is left with no record in it. Therefore, you can use the built-in AVAILABLE function to determine if the FIND
failed. In this case, we don’t use the information in the ERROR-STATUS system handle, but still use NO-ERROR
to prevent the error message from displaying.

METHOD PUBLIC DECIMAL getCustomerBalance(custName AS CHAR):

 FIND FIRST Customer WHERE Customer.NAME = custName NO-ERROR.
 IF AVAILABLE Customer THEN
 RETURN Customer.Balance.
 ELSE
 RETURN ERROR. // No Customer found with that name
END.

Handle warnings
The error handling behavior of some handle methods is different depending on whether or not structured error
handling is in effect in the block where the method is called. It is in effect if you have a CATCH block and/or you
are using the UNDO, THROW directive on the block.

Note: There are several ways to set the UNDO, THROW directive for a block. See Block Flow of Control and
Condition Directives on page 25 for more detail.

Without structured error handling, these handle methods do not raise an error when the method fails, even
though it generates an error message. The AVM treats the error as if it is a warning. By default, the error
message displays to the current output device but execution continues at the next line, as if no error occurred.

OpenEdge Development: ABL Error Handling: Version 12.222

Chapter 3: Usage of NO-ERROR

In this case, you cannot use the ERROR-STATUS:ERROR attribute to detect that something went wrong. However,
the error messages are still saved in the ERROR-STATUS handle.Therefore, you should check NUM-MESSAGES
instead, as in this example:

DEFINE VARIABLE hSocket AS HANDLE.
CREATE SOCKET hSocket.
hSocket:CONNECT ("-H localhost -S 3333") NO-ERROR.

IF ERROR-STATUS:NUM-MESSAGES > 0 THEN
 RUN FailedSocketConnect.p.

If there is structured error handling on the block, the method raises an error, not a warning. The above code
still works as-is since NUM-MESSAGES is greater than 0 whether it is a warning or an error. But with structured
error handling you can alternatively code it by checking for ERROR-STATUS:ERROR, as in this code:

DEFINE VARIABLE hSocket AS HANDLE.

DO ON ERROR UNDO, THROW: // for unexpected errors
 CREATE SOCKET hSocket.
 hSocket:CONNECT ("-H localhost -S 3333") NO-ERROR.

 IF ERROR-STATUS:ERROR THEN
 RUN FailedSocketConnect.p.
END.

Incorrect use of NO-ERROR
The following example shows incorrect usage of the NO-ERROR phrase. Since the information in the
ERROR-STATUS handle is reset each time it is used, whether an error occurs or not, using it on successive
statements, and only checking it at the end of the sequence, may cause the application to lose information and
behave incorrectly. To trap any error that occurs in a set of statements, use a CATCH block. See CATCH Blocks
on page 57 for more information.

DEFINE VAR hSocket AS HANDLE.
DEFINE VAR mem AS MEMPTR.

CREATE SOCKET hSocket.
hSocket:CONNECT ("-H localhost -S 3333") NO-ERROR.
FOR EACH Customer WHERE Customer.Name BEGINS "A":
 PUT-STRING(mem, 1) = Customer.NAME NO-ERROR.
 hSocket:WRITE(mem, 1, LENGTH(Customer.Name)) NO-ERROR.
END.
hSocket:DISCONNECT() NO-ERROR.

/* This only tells you if the DISCONNECT call failed. You won’t
 even know whether the socket ever connected successfully. */
IF ERROR-STATUS:ERROR THEN DO:
 <Handle the error>
END.

23OpenEdge Development: ABL Error Handling: Version 12.2

Incorrect use of NO-ERROR

OpenEdge Development: ABL Error Handling: Version 12.224

Chapter 3: Usage of NO-ERROR

4
Block Flow of Control and Condition
Directives

The ON phrase is one of the ABL constructs used for altering the default error handling for basic blocks. For
information on default error (condition) handling see Default Condition Handling on page 15.There is a variation
of the ON phrase to control each of the ABL conditions:

• ON ERROR …

• ON STOP …

• ON QUIT …

• ON ENDKEY …

The ON phrase can be used on the following blocks:

ExamplesBlock type

DO ON STOP UNDO, LEAVE:

DO TRANSACTION ON ERROR UNDO, THROW:

DO

(This includes all DO block variations: simple DO blocks,
DO TRANSACTION, DO WHILE, and DO FOR)

FOR EACH Order ON ERROR UNDO, NEXT:FOR EACH

REPEAT ON QUIT UNDO, LEAVE:REPEAT

25OpenEdge Development: ABL Error Handling: Version 12.2

There can be multiple ON phrases on the same block, separated by white space. For example:

DO TRANSACTION ON ERROR UNDO, RETRY
 ON STOP UNDO, LEAVE:
END.

You cannot modify the error action on other blocks using the ON phrase. This includes:

• Procedures (top-level or internal)

• User-defined methods

• User-defined property getter/setter blocks

• Constructors/destructors

• User-defined functions

• UI trigger blocks

• Database triggers (ON block with CREATE, DELETE, WRITE, or ASSIGN event)

However, there is a way to change the default error handling for most of these blocks, at a block or routine
level. This is described in the section on Use UNDO, THROW on page 31.

For details, see the following topics:

• ON phrase syntax

• Usage of labels

• Precedence of the ON phrase

• Examples using ON ERROR

• Use UNDO, THROW

• ON phrases and STOP conditions

• Throw error and stop objects from an application server to an ABL client

OpenEdge Development: ABL Error Handling: Version 12.226

Chapter 4: Block Flow of Control and Condition Directives

ON phrase syntax
This is the full syntax for the ON phrase. Note there are slightly different options for the different phrases.
Specifically, only ON ERROR has the THROW option. STOP conditions are thrown by default, so there is no need
to specify TRHOW in the ON STOP syntax. ON ENDKEY and ON QUIT do not have the THROW option since they
are older constructs and do not participate in the newer structured error handling model. In addition, ON QUIT
does not require the UNDO option, unlike the others.

ON ERROR UNDO

[label1]
[, LEAVE [label2]
| , NEXT [label2]
| , RETRY [label1]
| , RETURN [return-value |

 ERROR [return-value | error-object-expression] |
 NO-APPLY]

| , THROW

]

ON QUIT [UNDO [label1]]
[, LEAVE [label2]
| , NEXT [label2]
| , RETRY [label1]
| , RETURN [return-value |

 ERROR [return-value | error-object-expression] |
 NO-APPLY]
]

ON [STOP | ENDKEY] UNDO

[label1]
[, LEAVE [label2]
| , NEXT [label2]
| , RETRY [label1]
| , RETURN [return-value |

 ERROR [return-value | error-object-expression] |
 NO-APPLY]
]

27OpenEdge Development: ABL Error Handling: Version 12.2

ON phrase syntax

label1

The name of the block whose processing you want to undo. If you do not name a block with label1,
the AVM undoes the processing of the block started by the statement that contains the ON
ERROR/STOP/ENDKEY phrase.

LEAVE [label2]

Indicates that after undoing the processing of a block, the AVM leaves the block labeled label2. If
you do not name a block, the AVM leaves the block labeled with label1. There are restrictions. For
example, you cannot undo an outer block, but leave only the inner block.

NEXT [label2]

Indicates that after undoing the processing of a block, the AVM executes the next iteration of the
block you name with the label2 option. If you do not name a block with the NEXT option, the AVM
executes the next iteration of the block that contains the ON phrase.

RETRY [label1]

Indicates that after undoing the processing of a block, the AVM repeats the same iteration of the
block.

Because RETRY in a block without user input results in an infinite loop, the AVM automatically checks
for this possibility and converts a RETRY block into a LEAVE block, or a NEXT block, if it is an iterating
block. This behavior is often referred to as infinite loop protection.

RETURN ...

Returns to the calling routine, if there is one. The following table describes various RETURN options:

DescriptionOption

In procedures and VOID methods, this must be
a CHARACTER string. The caller can use the
RETURN-VALUE function to read the returned
value. For user-defined functions, non-VOID
methods and property getters, the value must
match the specified return type.

return-value

Undoes the current subtransaction, and raises
ERROR in the caller.You cannot specify ERROR
within a user-interface trigger block or a
destructor.

For user-defined functions see note below.

ERROR

Undoes the current subtransaction, and raises
ERROR in the caller.The CHARACTER string you
provide is available to the caller in the
RETURN-VALUE function. The AVM also creates
an AppError object and stores the
return-value in the ReturnValue property.

For user-defined functions see note below.

ERROR return-value

OpenEdge Development: ABL Error Handling: Version 12.228

Chapter 4: Block Flow of Control and Condition Directives

Undoes the current subtransaction, and raises
ERROR in the caller. The specified error object
instance is thrown to the caller.

For user-defined functions see note below.

ERROR error-object-expression

In a user-interface trigger, prevents the AVM from
performing the default behavior for the trigger
event. Otherwise, the option is ignored.

NO-APPLY

Note: Using RETURN ERROR in a user-defined function sets the target variable of the function to
the Unknown value (?) instead of raising ERROR in the caller. See Raise ERROR to the caller of a
user-defined function on page 51 for more detail.

THROW

Use this directive to explicitly propagate an error to the enclosing block, if there is one, otherwise to
the caller.You can learn more about throwing error objects in Raise Conditions on page 47.

Usage of labels
Labels can be used to undo the transaction associated with the outer block, rather than just the subtransaction
of the inner block.

The following example sets up a common set of nested FOR EACH blocks that list the order numbers for the
first few customer records in the Sports2000 database. Within the inner block, a nonsensical FIND statement
raises error after the first iteration. This trivial framework allows you to test the interactions of ON ERROR
phrases.

PROCEDURE NestedBlocks:

Outer-Block:
 FOR EACH Customer WHERE CustNum < 5:
 ASSIGN Customer.Name = Customer.Name + "_changed".

Inner-Block:
 FOR EACH Order OF Customer

ON ERROR UNDO Outer-Block, RETURN:

 DISPLAY OrderNum.

 /* Nonsense code raises ERROR. */
 FIND SalesRep WHERE RepName = Customer.Name.

 END. /* Inner-Block */
 END. /* Outer-Block */

 DISPLAY "For Blocks Complete".
END PROCEDURE.

RUN NestedBlocks.

DISPLAY "Procedure NestedBlocks Complete."

The flow of this example is as follows:

29OpenEdge Development: ABL Error Handling: Version 12.2

Usage of labels

1. The ASSIGN statement in Outer-Block starts a transaction.

2. The FIND statement in Inner-Block raises the ERROR condition.

3. The error message is displayed.

4. The explicit ON ERROR phrase of Inner-Block activates, causing the entire Outer-Block transaction
to be undone, and a RETURN to the main block.

5. The string "Procedure NestedBlocks Complete." is displayed.

Precedence of the ON phrase
ON phrases are at the bottom of the order of precedence for handling errors. If another error handling construct
is used, specifically NO-ERROR or CATCH blocks, the ON phrase is ignored. If there are CATCH blocks, but none
of them are compatible with the type of condition that occurs, then the ON phrase takes effect (assuming
NO-ERROR is not used on the statement).

In general, the AVM performs error handling using this precedence, from highest to lowest. The AVM only
abides by one of these when a condition is raised:

• Statement NO-ERROR option

• CATCH block

• Block’s ON phrase (explicit or implicit)

Examples using ON ERROR
The following simple code sample illustrates some of the ON phrase constructs.

PROCEDURE ScanCustomers:
 DEFINE VAR num AS INTEGER.

 FOR EACH Customer:
 FOR EACH Order OF CUSTOMER ON ERROR UNDO, RETURN:

 /* Nonsense code raises ERROR. */
 Num = INTEGER(Order.BillToID). //Fails since BillToId is not all numeric

 …
 END.
 END.

 DISPLAY "For blocks complete".
END PROCEDURE.

RUN ScanCustomers.
DISPLAY "Procedure ScanCustomers complete".

The following table lists all the ON ERROR phrases in effect in this procedure from the outermost to the innermost.

ON ERROR phraseBlock

Implicit ON ERROR UNDO, LEAVEProcedure block (.p file)

OpenEdge Development: ABL Error Handling: Version 12.230

Chapter 4: Block Flow of Control and Condition Directives

Implicit ON ERROR UNDO, LEAVEInternal procedure ScanCustomers

Implicit ON ERROR UNDO, NEXTFOR EACH Customer block

Explicit ON ERROR UNDO, RETURNFOR EACH Order block

When the AVM raises ERROR in the FOR EACH ORDER block, the explicit ON ERROR phrase directs the AVM
to return to the caller which is the procedure file. Since the RETURN option does not include the ERROR option,
ERROR is not raised in the procedure block, and the final DISPLAY statement executes. However, the first
DISPLAY statement (“For blocks complete”) does not run.

If you change the explicit ON ERROR phrase as shown in the following code snippet, you see almost identical
behavior, except the final display statement does not execute:

FOR EACH Order OF Customer
ON ERROR UNDO RETURN ERROR:

Due to the ON phrase shown, ERROR is then raised in the procedure block. The AVM then executes the default
LEAVE action and return control to its caller. If this is the top-level procedure, the application ends. If you change
the explicit ON ERROR phrase as shown in the following code snippet, an error object is created and raised in
the outer block, which is the FOR EACH Customer block:

FOR EACH Order OF Customer
ON ERROR UNDO THROW:

Since there is no explicit ON phrase, the default action occurs, which is that the error message is displayed and
the AVM goes to the next Customer iteration.

If you remove the explicit ON ERROR phrase altogether, the implicit ON ERROR phrase is ON ERROR UNDO,
NEXT, and one error message is displayed for each Order of each Customer record.

Use UNDO,THROW
You can use ON ERROR UNDO, THROW to change the default error handling. This construct is beneficial since
it is not possible to use an ON phrase on some block types, such as procedure or method blocks. It is also
useful for handling conditions in a central location, rather than locally. For example, if you have a code module
with many blocks that can fail, and there is no advantage to a local CATCH block, and the error handling code
is the same for all blocks in the module, then you can THROW all the errors up the call stack to a central location
where a single CATCH statement can handle them all.

To take advantage of this more modern, structured error handling approach, you can change the default error
directive to UNDO, THROW. Then errors propagate up by default so they can be handled by a common CATCH
block. Exceptions can then be coded on specific blocks. To accomplish this, ABL provides two statements:

• BLOCK-LEVEL ON ERROR UNDO, THROW

• ROUTINE-LEVEL ON ERROR UNDO, THROW

31OpenEdge Development: ABL Error Handling: Version 12.2

Use UNDO,THROW

BLOCK-LEVEL ON ERROR UNDO,THROW statement

The BLOCK-LEVEL ON ERROR UNDO, THROW statement changes the default implicit ON ERROR phrase to
ON ERROR UNDO, THROW for every supported block type in the file that contains the statement. This is
specifically for ERROR, not STOP conditions because STOP conditions are already thrown by default. The
following blocks are affected by this statement:

• Procedure (also called main block, external procedure, or .p file)

• Internal procedure

• Database trigger (ON block with CREATE, DELETE, WRITE, or ASSIGN event)

• User-defined function

• Constructor

• User-defined method

• User-defined property getter/setter

• REPEAT

• FOR

• DO TRANSACTION

The following blocks are not affected:

• Any block for which an error-handling directive is explicitly specified

• Simple DO block

• DO WHILE block

• Destructor

• UI trigger

Syntax

BLOCK-LEVEL ON ERROR UNDO, THROW.

The following rules affect the placement of the BLOCK-LEVEL ON ERROR UNDO, THROW statement:

• The statement occurs once in each source file in which the behavior is desired.

• The statement must come before any definitional or executable statement in the procedure or class file.

• The statement can come before or after a USING statement.

Example
To create an application that uses structured error handling to handle all uncaught local errors at the top level:

1. Include the BLOCK-LEVEL ON ERROR UNDO, THROW statement in all your procedure and class files.

2. For each basic block, decide whether a different explicit flow of control directive is appropriate.

3. Add a CATCH block for the Progress.Lang.Error interface to your startup procedure block. For more
information, see CATCH Blocks on page 57.

4. Add a CATCH block locally for any errors you want to handle at a local level.

OpenEdge Development: ABL Error Handling: Version 12.232

Chapter 4: Block Flow of Control and Condition Directives

The following simple example illustrates the design pattern:

BLOCK-LEVEL ON ERROR UNDO, THROW.

PROCEDURE find1000:
 /* Ignore potential errors */
 FIND FIRST Customer WHERE CustNum = 1000 NO-ERROR.
END PROCEDURE.

PROCEDURE find2000:
 FIND FIRST Customer WHERE CustNum = 2000.

 CATCH eSysError AS Progress.Lang.SysError:
 /* Take care of this error locally */
 END CATCH.
END PROCEDURE.

PROCEDURE find3000:
 FIND FIRST Customer WHERE CustNum = 3000.
END PROCEDURE.

/* Main Startup Procedure Block */

RUN find1000.
RUN find2000.
RUN find3000.

/* Won't execute because error will be raised here by find3000 */
MESSAGE "Application completed execution successfully."
 VIEW-AS ALERT-BOX BUTTONS OK.

CATCH eAnyError AS Progress.Lang.Error:
 MESSAGE "Unexpected error occurred..." SKIP
 "Logging information..." SKIP
 "Exiting application..."
 VIEW-AS ALERT-BOX BUTTONS OK.
END CATCH.

ROUTINE-LEVEL ON ERROR UNDO,THROW statement

The ROUTINE-LEVEL ON ERROR UNDO, THROW statement is very similar to BLOCK-LEVEL ON ERROR
UNDO, THROW, but it affects only a subset of block types. Specifically, this statement changes the default
behavior for the following blocks:

• Procedure (also called main block, external procedure, or .p file)

• Internal procedure

• Database trigger (ON block with CREATE, DELETE, WRITE, or ASSIGN event)

• User-defined function

• Constructor

• User-defined method

• User-defined property getter/setter

The following blocks are not affected:

• Any block for which an error-handling directive is explicitly specified

• REPEAT

• FOR

33OpenEdge Development: ABL Error Handling: Version 12.2

Use UNDO,THROW

• DO TRANSACTION

• Simple DO block

• DO WHILE block

• Destructor

• UI trigger

Syntax

ROUTINE-LEVEL ON ERROR UNDO, THROW.

The same rules that affect the placement of the BLOCK-LEVEL ON ERROR UNDO, THROW statement also
apply to ROUTINE-LEVEL ON ERROR UNDO, THROW:

• The statement occurs once in each .p or .cls file in which the behavior is desired.

• The statement must come before any definitional or executable statement in the procedure or class file.

• The statement can come before or after a USING statement.

Note: The ROUTINE-LEVEL ON ERROR UNDO, THROW statement is ignored if BLOCK-LEVEL ON ERROR
UNDO, THROW occurs in the same file.

-undothrow startup parameter

The compile-time startup parameter -undothrow n makes UNDO, THROW the default block-level or routine-level
error directive for all files compiled while the parameter is in effect. It has the same effect as inserting either
BLOCK-LEVEL ON ERROR UNDO, THROW or ROUTINE-LEVEL ON ERROR UNDO, THROW (depending on
the value of n) in every source file compiled into r-code.

Caution: Because this parameter potentially affects many files comprising a large volume of source code, be
sure that you understand the implications of using it to compile your application.

The argument n is required and must have a value of 1 or 2:

• -undothrow 1 — Yields the same result as including ROUTINE-LEVEL ON ERROR UNDO, THROW in
every procedure and class file being compiled. See ROUTINE-LEVEL ON ERROR UNDO, THROW statement
on page 33.

• -undothrow 2 — Yields the same result as including BLOCK-LEVEL ON ERROR UNDO, THROW in every
procedure and class file being compiled. If any ROUTINE-LEVEL ON ERROR UNDO, THROW statements
occur in the source, this parameter supersedes them. See BLOCK-LEVEL ON ERROR UNDO, THROW
statement on page 32.

Using this parameter with an argument other than 1 or 2 results in an error and immediate termination of the
process.

OpenEdge Development: ABL Error Handling: Version 12.234

Chapter 4: Block Flow of Control and Condition Directives

Determine error-handling characteristics of r-code

To determine whether a given r-code file was compiled with either BLOCK-LEVEL ON ERROR UNDO, THROW
or ROUTINE-LEVEL ON ERROR UNDO, THROW in effect (applied by using either a statement or the
-undothrow parameter), inspect one of the following:

• The UNDO-THROW-SCOPE attribute of the RCODE-INFO system handle

• The COMPILE statement's XREF or XREF-XML output

UNDO-THROW-SCOPE attribute
The RCODE-INFO system handle has a read-only attribute named UNDO-THROW-SCOPE of type CHARACTER.
It has the following possible values:

• "ROUTINE-LEVEL"

• "BLOCK-LEVEL"

• "" (empty string), if neither directive is used

XREF and XREF-XML output
If a file compiled with the XREF option is subject to block-level or routine-level UNDO, THROW behavior, the
XREF output includes one of the following lines:

<compile file_name> <file_name> <line #> ROUTINE-LEVEL ON ERROR UNDO, THROW
<compile file_name> <file_name> <line #> BLOCK-LEVEL ON ERROR UNDO, THROW

The line, if present, is usually the first line in the listing for the applicable file, and in all cases is near the top of
the listing.

Similarly, if the file is compiled with the XREF-XML option, the XML output includes an entry like the following
("BLOCK-LEVEL" replaces "ROUTINE-LEVEL" as appropriate):

<Reference Reference-type="ROUTINE-LEVEL" Object-identifier="">
 <Source-guid>xX6qZFj+b6fhERbFDfGViA</Source-guid>
 <File-num>1</File-num>
 <Ref-seq>3</Ref-seq>
 <Line-num>1</Line-num>
 <Object-context>ON ERROR UNDO, THROW</Object-context>
 <Access-mode/>
 <Data-member-ref/>
 <Temp-ref/>
 <Detail/>
 <Is-static>false</Is-static>
 <Is-abstract>false</Is-abstract>
</Reference>

Note: Where neither the block-level nor the routine-level directive is in effect, no explicit corresponding entry
appears in the output. If the source file contains both statements, both corresponding entries appear in the
output, even though the AVM ignores the routine-level statement.

35OpenEdge Development: ABL Error Handling: Version 12.2

Use UNDO,THROW

ON phrases and STOP conditions
There are a few STOP conditions that do not abide by some or all ON phrases. Here are two prominent ones:

• The ABL code tries to use an inactive index.

The AVM propagates the STOP condition up through the block that started the transaction (not just the
subtransaction) regardless of any ON STOP phrases or CATCH blocks along the way.

• The database connection is lost.

When the connection is lost, any code that references the database causes subsequent errors to occur.
The AVM attempts to avoid these cascading error conditions by raising the STOP condition and propagating
it up to the first procedure or class level above which there are no references to the database. Any ON STOP
phrases or CATCH blocks encountered along the way are ignored.

Throw error and stop objects from an application server to an ABL
client

If an error is thrown out of a top level procedure of an application server (for example, by using RETURN ERROR
error-object-expression or UNDO, THROW error-object-expression), the error or stop object
being thrown is serialized and sent back to the ABL client. The client then deserializes the object and rethrows
it in the context of the RUN statement on the client. This functionality is subject to the same
serialization/deserialization restrictions as for any other object. The restrictions particularly relevant to error
and stop objects are as follows:

• In the case of a user-defined class, the object’s class and all the classes in its hierarchy must be marked
as SERIALIZABLE. For more information on marking a class SERIALIZABLE, see the CLASS statement
in the ABL Reference.

• .NET and ABL-extended .NET error objects cannot be thrown across the application server boundary.

• SoapFaultError objects can be thrown from an application server to an ABL client. However, the
handle-based object that the SoapFault property points to is not recreated during the deserialization of
the SoapFaultError object. It is set to the Unknown (?) value.

In the case of the first two items, if the application server code attempts to throw such an object, any message
from the object is written to the application server log. In addition, another error is raised to indicate that the
throw failed. That error message is also written to the application server log. An error condition is raised on the
RUN statement in the client.

Class-based error and stop objects can also be thrown from an OpenEdge application server to a client for an
asynchronous request. In that case, error and stop conditions will not be handled by a CATCH block as the
block containing the RUN statement may be long over. Instead, the information must be made available in the
PROCEDURE-COMPLETE event handler via attributes of the asynchronous request handle. Therefore, an error
object or Progress.Lang.StopError stop object is returned to the client and its reference provided as the
value of the ERROR-OBJECT attribute of the asynchronous request handle. Any other stop object (a
Progress.Lang.Stop or a subclass) is returned to the client and its reference provided as the value of the
STOP-OBJECT attribute of the asynchronous request handle. The ERROR-STATUS system handle's ERROR
attribute is also set.

OpenEdge Development: ABL Error Handling: Version 12.236

Chapter 4: Block Flow of Control and Condition Directives

5
ERROR and STOP Classes

There is a set of built-in objects in ABL that represent system-generated ERROR conditions:

• Progress.Lang.ProError

• Progress.Lang.SysError

• Progress.Lang.SoapFaultError

There is also a set of built-in objects that represent system-generated STOP conditions:

• Progress.Lang.StopError

• Progress.Lang.Stop

• Progress.Lang.StopAfter

• Progress.Lang.LockConflict

• Progress.Lang.UserInterrupt

There is also a built-in object which can be used to represent an application-generated error condition. In
addition, you can create your own application error objects that inherit from this class:

• Progress.Lang.AppObject

Lastly, there is an interface that contains the common properties of all error objects as well as the StopError
object:

• Progress.Lang.Error

37OpenEdge Development: ABL Error Handling: Version 12.2

The following diagram shows the relationship between these objects.

Figure 1: Hierarchy of Error and Stop Classes

Since Progress.Lang.ProError implements the Progress.Lang.Error interface, all of its subclasses
do as well. Note that a .NET Exception also behaves as if it implements the Progress.Lang.Error interface
even though it is not an ABL object. Other than Progress.Lang.StopError, the other stop objects do not
implement this interface.

For details, see the following topics:

• Progress.Lang.Error interface

• Progress.Lang.ProError class

• Progress.Lang.SysError class

• Progress.Lang.StopError class

• Progress.Lang.SoapFaultError class

• Progress.Lang.Stop class

• Progress.Lang.StopAfter class

• Progress.Lang.UserInterrupt class

• Progress.Lang.LockConflict class

• Progress.Lang.AppError class

• .NET exceptions

• Enable stack tracing with error objects

OpenEdge Development: ABL Error Handling: Version 12.238

Chapter 5: ERROR and STOP Classes

Progress.Lang.Error interface
The Progress.Lang.Error interface describes a common set of properties and methods that built-in ABL
error classes implement. This interface cannot be implemented by a user-defined class. For user-defined
classes, create a subclass of the Progress.Lang.AppError class to create your own type of ABL error
object. See the Progress.Lang.AppError class on page 42 for more information.

The Progress.Lang.Error interface defines the properties and methods shown in the following table:

Table 3: Properties and methods

DescriptionMember

Returns a string representing the call stack at the
time the error object was created. For
Progress.Lang.StopError, this property is
always populated. For all other error objects, if the
ERROR-STACK-TRACE attribute of the SESSION
handle is false, then this property returns the
Unknown value (?). To enable the call stack, set
SESSION:ERROR-STACK-TRACE property to
TRUE directly, or use the -errorstack startup
parameter.

CallStack property

This property indicates how many error messages
the error object contains.

NumMessages property

The Severity property is not used by ABL
system errors and returns zero if accessed. It is
provided as a mechanism to assign severity
rankings to your various application errors
(Progress.Lang.AppError).

Severity property

Returns the error message for the error at the
specified index position in the object’s message
list,beginning with one (1). If there is no error
message at the indicated index, the method
returns the empty string.

GetMessage(MessageIndex) method

Returns the error message number for the error
at the specified index position in the object’s
message list. For the
Progress.Lang.SysError and
Progress.Lang.SoapFaultError objects, the
method returns the unique message number for
the system generated error. If there is no error
message at the index, the method returns 0. If the
object is a .NET Exception, the method also
returns 0.

GetMessageNum(MessageIndex) method

39OpenEdge Development: ABL Error Handling: Version 12.2

Progress.Lang.Error interface

Progress.Lang.ProError class
Progress.Lang.ProError is the super class for all ABL built-in and user-defined classes that represent
errors in the ABL.You cannot directly inherit from this class, and the class constructors are reserved for system
use only. The immediate subclasses of this class represent the two major types of classes in ABL:

• Progress.Lang.SysError represents any error generated by the AVM

• Progress.Lang.AppError represents any error your application defines

Progress.Lang.ProError inherits from Progress.Lang.Object and therefore inherits all the common
methods and properties needed for managing user-defined objects in ABL. It also implements the
Progress.Lang.Error interface, which provides all the properties and methods relevant for an error object,
as shown in Properties and methods table.

Progress.Lang.SysError class
When an ABL statement generates an error message and raises the ERROR condition, the AVM creates a
Progress.Lang.SysError object.You cannot inherit from this class, and the class constructors are reserved
for system use only.

The Properties and methods table describes the properties and methods implemented by this class.

Progress.Lang.StopError class
When an ABL statement generates an error message that raises the STOP condition, the AVM creates a
Progress.Lang.StopError object.You cannot inherit from this class, and the class constructors are
reserved for system use only.

The Properties and methods table describes the properties and methods implemented by this class.

Progress.Lang.SoapFaultError class
This class wraps the ABL built-in SOAP-fault system object. The SOAP-fault object contains the information
from a SOAP fault generated by a Web service call from an ABL application.
Progress.Lang.SoapFaultError inherits from Progress.Lang.SysError.You cannot inherit from this
class, and the class constructors are reserved for system use only.

The Properties and methods table describes the properties and methods implemented by this class. The
following table describes the additional property of this class.

OpenEdge Development: ABL Error Handling: Version 12.240

Chapter 5: ERROR and STOP Classes

Table 4: SoapFaultError properties

DescriptionMember

Contains the handle to the SOAP-fault object. The
Soap-Fault-Detail property of this handle provides the full detail
about the original SOAP fault, among other attributes.

SoapFault property

See the section on handling errors in Develop Web Services for OpenEdge for more detailed information on
handling SOAP faults.

Caution: Like other error objects, objects of type SoapFaultError can be thrown from an application server
to an ABL client. However, the handle-based object that the SoapFault property points to is not recreated
during the deserialization of the SoapFaultError object.

Progress.Lang.Stop class
When the AVM executes the STOP statement it creates an instance of the Progress.Lang.Stop class.You
cannot inherit from this class, and the class constructors are reserved for system use only. It contains one
property as shown in the table below.

Table 5: Progress.Lang.Stop properties

DescriptionMember

Returns a string representing the call stack at the time
the stop object is created. Because this is for a STOP
condition, this property is always populated. The
ERROR-STACK-TRACE attribute of the SESSION
handle does not have to be TRUE.

CallStack property

Progress.Lang.StopAfter class
This object is created when there is a timeout due to a STOP-AFTER phrase. This class inherits from
Progress.Lang.Stop and thus inherits the CallStack property. It has no methods or properties of its own.

Progress.Lang.UserInterrupt class
This object is created when the user hits CTRL+C (Unix/Linux) or CTRL+Break (Windows).This class inherits
from Progress.Lang.Stop and thus inherits the CallStack property. It has no methods or properties of
its own.

41OpenEdge Development: ABL Error Handling: Version 12.2

Progress.Lang.Stop class

Progress.Lang.LockConflict class
This object is created when there is a timeout while waiting for a record lock (based on the -lkwtmo startup
parameter), or by hitting Cancel on the lock conflict wait dialog. Note that in character mode (Linux, Unix or
character mode in Windows), you can hit CTRL+C or CTRL+Break to stop waiting. However, the AVM still
maps that to the LockConflict object due to the context, not to the Progress.Lang.UserInterrupt
object.This class inherits from Progress.Lang.Stop and thus inherits the CallStack property. It also has
three properties of its own. These all correspond to the same information that is shown in the lock conflict wait
dialog box.

Table 6: Progress.Lang.LockConflict properties

DescriptionMember

This is the name of the database table that has the
lock conflict.

TableName property

This is the name of the user that is currently holding
the lock and thus causing the lock conflict.

User property

This is the name of the device on which the other AVM
process is running that is holding the lock and thus
causing the lock conflict. Alternatively, this can be
“Dictionary” if another process is doing schema
updates via the Dictionary. The format of this name is
different on different operating systems.

Device property

Progress.Lang.AppError class
Progress.Lang.AppError is the super class of all application errors. An application error is simply any
collection of data you need to provide necessary information about a condition. Representing a user-defined
error as an error object allows your application to throw and catch or return an error in the ABL structured error
handling model. An application can use the built-in AppError class directly or can create objects that inherit
from this class to provide extra error or contextual information

An application error can be raised either by using the RETURN ERROR or the UNDO, THROW statement. See
Raise Conditions on page 47 for details on how to throw an application error.

The following table describes additional properties and methods of this class beyond what is required by the
Progress.Lang.Error interface, which this class implements.

OpenEdge Development: ABL Error Handling: Version 12.242

Chapter 5: ERROR and STOP Classes

Table 7: AppError properties and methods

DescriptionMember

This property is included in the AppError object to
provide a bridge between the older functionality of
RETURN ERROR ErrorString and error objects.
Traditionally, this form of the RETURN ERROR
statement populated the data for the RETURN-VALUE
function. Now, the AVM also generates an AppError
and populates the ReturnValue property. That way
the same information is available if this error object is
caught. Without using CATCH blocks, the
ErrorString is still available in the traditional way,
via the RETURN-VALUE function.

ReturnValue property

Although the Severity property is an inherited
property, it is intended as a feature of AppError
objects and is not used by SysError objects.
Severity has no intrinsic meaning to ABL.You can
use it to establish a severity ranking system in your
application.

Severity property

Adds a message to the AppError object with values
from the ErrorMessage and MessageNumber
arguments to the end of the message list.Your
application provides the message number and text.
Access error messages and message numbers with
the GetMessage() and GetMessageNum()
methods.This method increments the NumMessages
property on the AppError by 1.

AddMessage(ErrorMessage, MessageNumber)
method

Removes the error at the specified index position (both
error message string and error message number) from
the message list. The method decrements the
NumMessages property by 1 and moves the messages
after the indexed error forward in the list by 1.

RemoveMessage(MessageIndex) method

AppError Constructors

The following is the default constructor. This constructor creates an AppError object with an empty message
list and does not set any properties.

Syntax

PUBLIC AppError()

The following constructor creates an AppError object and assigns the first message on the object with the
values from the ErrorMessage and MessageNumber arguments. It also sets the NumMessages property to
1. The error message and message number can be accessed with the GetMessage(1) and
GetMessageNum(1) methods.

43OpenEdge Development: ABL Error Handling: Version 12.2

Progress.Lang.AppError class

Syntax

PUBLIC AppError(INPUT ErrorMessage AS CHARACTER
 INPUT MessageNumber AS INTEGER)

The following constructor creates an AppError object with the ReturnValue property set with the value of
the ReturnValue parameter. This constructor is used when the AVM implicitly creates an AppError object
for a RETURN ERROR ErrorString statement.You can also invoke this constructor directly.

Syntax

PUBLIC AppError(INPUT ReturnValue AS CHARACTER)

Note: This constructor does not set an error message. If the AddMessage() method is not used to set one,
no message is displayed if an object constructed this way is thrown and handled by default error handling.

Below is an example of using an AppError.

 ROUTINE-LEVEL ON ERROR UNDO, THROW.
 DEF VAR ix AS INT.

 RUN proc.

 CATCH err AS PROGRESS.lang.AppERROR:

 MESSAGE "An Error occurred" SKIP
 "returnvalue" err:returnvalue SKIP // This will be empty
 "severity" err:severity SKIP
 VIEW-AS ALERT-BOX.

 DO ix = 1 TO err:NUMMESSAGES: // There will be 2
 MESSAGE err:GetMessage(ix) err:GetMessageNum(ix).
 END.
 END.

 PROCEDURE proc:
 DEFINE VAR err AS PROGRESS.Lang.Apperror.

 err = NEW PROGRESS.Lang.AppError("The car cannot be rented", 1).
 err:addmessage ("No driver's license was provided", 25).
 err:severity = 10.

 /* This is thrown to the caller due to the ROUTINE-LEVEL
 ON ERROR UNDO, THROW directive. */
 UNDO, THROW err.

 END.

OpenEdge Development: ABL Error Handling: Version 12.244

Chapter 5: ERROR and STOP Classes

.NET exceptions
A .NET Exception is a class instance that is thrown by a .NET method that inherits from .NET’s
System.Exception. If you are interacting with .NET objects through your ABL code, it is possible that one
of these error objects can be thrown. In ABL you interact with these .NET objects in the same way as with ABL
error and stop objects. They can be caught or rethrown.

The .NET native methods and properties of the Exception object can be accessed. However, ABL also makes
.NET exceptions appear as if they implement the Progress.Lang.Error interface. So you can pass a .NET
exception to an error handling routine that accepts a Progress.Lang.Error interface as a parameter. Then
you can use the methods and properties of that interface to access the data in the .NET class.

Enable stack tracing with error objects
All error objects have the ability to preserve the call stack in the CallStack property.The property is populated
at the time an error object is instantiated. Populating the CallStack property incurs a small amount of overhead
that you may not want. Therefore, ABL has an attribute on the SESSION handle called ERROR-STACK-TRACE
and a startup parameter called -errorstack to enable or disable this feature. The default value is FALSE
(disabled). However, if getting the call stack is important for troubleshooting your application, you should not
hesitate to use it. Note that it is not necessary to use this to get call stack information from any of the Stop
classes (Progress.Lang.StopError, Progress.Lang.Stop, or any of its subclasses). For STOP conditions,
CallStack is always populated.

If ERROR-STACK-TRACE is FALSE, the CallStack property of an error object is the Unknown value (?).

If ERROR-STACK-TRACE is TRUE, an error object thrown from an application server to a client contains the
stack trace from the application server in its CallStack property. If ERROR-STACK-TRACE is TRUE on the
client, the CallStack property also includes the client stack trace.The text "Server StackTrace:" appears
at the top of the application server stack trace to differentiate it from the client stack trace.

doIt asclient.p at line 46 (asclient.p)
asclient.p at line 26 (asclient.p)
main.p at line 10 (main.p)

Server StackTrace:
myproc svr.p at line 30 (svr.p)
svr.p at line 5 (svr.p)

45OpenEdge Development: ABL Error Handling: Version 12.2

.NET exceptions

OpenEdge Development: ABL Error Handling: Version 12.246

Chapter 5: ERROR and STOP Classes

6
Raise Conditions

When a system condition is encountered during program execution, the AVM automatically raises an ERROR
or STOP condition. However, there are also programmatic ways to raise a condition. This set of topics discuss
ABL constructs for raising conditions programmatically.

• Raise errors with UNDO, THROW on page 48

• RETURN ERROR on page 49

• Raise ERROR to the caller of a user-defined function on page 51

• Throw a condition out of a destructor on page 52

• Raise the QUIT condition on page 53

• Raise the STOP condition on page 53

• Raise a timed STOP condition on page 54

• Throw error and stop objects from an application server to an ABL client on page 36

For details, see the following topics:

• Raise errors with UNDO, THROW

• RETURN ERROR

• Raise ERROR to the caller of a user-defined function

• Throw a condition out of a destructor

• Raise the QUIT condition

• Raise the STOP condition

47OpenEdge Development: ABL Error Handling: Version 12.2

• Raise a timed STOP condition

• Throw error and stop objects from an application server to an ABL client

Raise errors with UNDO,THROW
During the execution flow, you may determine that there is an invalid condition (for example, when validating
input) and want to communicate that to other parts of the program or to the user. To do this, you create an
application error object and raise the ERROR condition by using the UNDO, THROW statement.

In addition, you can provide local CATCH blocks that provide handling for specific error numbers and throw any
other condition to an outer or calling block to be handled by more generic error-handling code.The same UNDO,
THROW statement can be used in a CATCH block to accomplish this.

Syntax

UNDO, THROW [error-object-expression].

error-object-expression

Any expression that results in an instance of an error or stop object.

When this statement is executed, it undoes the current block (the innermost block with error-handling capabilities)
and raises ERROR or STOP on the statement. ERROR is raised if it is an error object and STOP is raised for any
of the stop objects (which includes Progress.Lang.StopError). It is then up to the block directives to
determine how the error is handled, as with any other condition.

Examples
In each of the following examples, ERROR is raised on the UNDO, THROW statement. If there are any updates
in the block that require undoing, that is performed, though in these examples there are not. The comment in
each code example describes what happens. Assume the current output device is the screen:

Example 1

This example demonstrates the use of UNDO, THROW within a block. Note that this is not the same as using
the ON ERROR UNDO, THROW directive on that block. With the UNDO, THROW statement, the condition is
simply raised on the current statement.

DO ON ERROR UNDO, LEAVE:
 IF CurrentTime > ClosingTime THEN

UNDO, THROW NEW Progress.Lang.AppError("Can't take a delivery order
 after closing time.", 550).
END.

<next line>

/* Since there is no CATCH block and no THROW directive, the error message
 provided as the parameter to the AppError constructor is displayed.
 Execution then continues at <next line>.
*/

Example 2

OpenEdge Development: ABL Error Handling: Version 12.248

Chapter 6: Raise Conditions

With the ON ERROR UNDO, THROW directive, the condition, which was already raised within the context of
that block, is thrown to the outer block (or caller if there is no outer block).

DO ON ERROR UNDO, THROW:
 IF CurrentTime > ClosingTime THEN

UNDO, THROW NEW Progress.Lang.AppError("Can't take a delivery order
 after closing time.", 550).
END.

<next line>

/* Once error is raised, the newly created AppError object is thrown out of the DO
 block due to the ON ERROR UNDO, THROW block directive. Thus, error is raised again
 at the END of the DO block (though functionally, it is outside of this block).
 Because there is no THROW directive or CATCH block at this level, this causes
 <next line> not to execute. Instead the error message that was provided as the
 parameter to the AppError constructor is displayed. Assuming this is the end
 of a procedure, execution continues in the caller, if there is one.
*/

If you use the DEBUG-ALERT feature (SESSION:DEBUG-ALERT = yes, or startup parameter -debugalert)
for each of the above two examples, the difference is clearer. For the first example, if you hit the Help button
on the alert box when the error message is displayed, it shows line 3 (the UNDO, THROW statement). In the
second example, it shows line 5 (the END statement).

Example 3

This example demonstrates what happens when the UNDO, THROW statement occurs within a CATCH block.
Here the condition is raised and thrown to the outer block of the associated block (or the caller if there is no
outer block). This happens because CATCH blocks have the UNDO, THROW flow-of-control directive by default.

DO ON ERROR UNDO, LEAVE:
 FIND FIRST Customer WHERE Customer.Name Begins “A”.

 CATCH err AS Progress.Lang.Error:
 IF err:GetMessageNum(1) = 565 // record not found
 THEN <do custom handling for this error>
 ELSE UNDO, THROW err.
 END.
END.

<next line>

CATCH err AS Progress.Lang.Error:
 MESSAGE err:GetMessage(1)
 VIEW-AS ALERT-BOX.
END.

/* The caught Progress.Lang.SysError object is thrown out of the CATCH block
 and thus, out of the associated DO block. Error is raised again in the
 outer block, <next line> does not execute, and the outer CATCH block runs.
*/

RETURN ERROR
The RETURN ERROR statement is another way of raising an ERROR condition. The full syntax of the RETURN
statement is shown below, though here we are only discussing the RETURN ERROR options.

49OpenEdge Development: ABL Error Handling: Version 12.2

RETURN ERROR

You can use the ERROR option in a procedure, database trigger block, class-based method, constructor, or
property accessor. However, you cannot use it in a user-interface trigger block or destructor to raise ERROR
outside of that block. This results in a compiler error. More information about conditions in destructors are
discussed in Throw a condition out of a destructor on page 52.You also cannot use RETURN ERROR in a
user-defined function to raise ERROR outside of that block. This is explained in more detail in Raise ERROR
to the caller of a user-defined function on page 51.

Note that if an error is returned from any procedure, method, or user-defined function, the values of any OUTPUT
or INPUT-OUTPUT parameters are not returned to the caller.

Syntax

RETURN

[return-value |
 ERROR [error-return-value | error-object-expression] |
 NO-APPLY].

error-return-value

A character expression.

error-object-expression

Any expression that results in an instance of an error or stop object.

Aside from being a stand-alone statement, the RETURN phrase, with the same options, is also available on the
following language elements:

• ON ENDKEY phrase

• ON ERROR phrase

• ON QUIT phrase

• ON STOP phrase

• UNDO statement

Regardless of the options, when RETURN ERROR executes, execution returns to the caller of the current
procedure, method, constructor, or property accessor, and ERROR is raised in the caller. If it occurs in a database
trigger, ERROR is raised on the statement that caused the database event. Because the AVM returns before
raising error, the block containing the RETURN statement or phrase is not undone. The behavior in the caller
is then dictated by that block’s error-handling capabilities (error directive or CATCH block).

Note: The remainder of this section does not apply to user-defined functions.

The AVM does the following when the RETURN ERROR statement executes:

• If neither an error-return-value nor an error-object-expression is supplied, the AVM creates
an instance of Progress.Lang.AppError with no error message set and the ReturnValue property
set to the empty string. The value for the RETURN-VALUE built-in function is also set to the empty string.

• If an error-return-value expression is supplied, the AVM creates the AppError object and sets its
ReturnValue property. No error message is set in the object. It also sets the value for the RETURN-VALUE
built-in function.

• If an instance of an error object is supplied, the AVM does not create a new instance.

OpenEdge Development: ABL Error Handling: Version 12.250

Chapter 6: Raise Conditions

• In all cases, the AVM returns and behaves as if this object was thrown on the invoking statement.

In the caller, if NO-ERROR is used on the invoking statement, any error messages in the object are transferred
to the ERROR-STATUS system handle, ERROR-STATUS:ERROR is set to TRUE, and the error object instance
is discarded. Any custom information in the error object is lost.

Otherwise (if NO-ERROR is not used on the invoking statement) the error object is handled in the usual way.
If there is a relevant CATCH block, the error is caught. Otherwise the block’s error directive takes effect. If default
error handling is in place, any error message is displayed to the output device. But if there is no error message
stored in the object, no display is made.

Example
The following example shows how RETURN ERROR is used to return a custom AppError to a caller using
NO-ERROR:

DEF VAR ix AS INT.

RUN proc NO-ERROR.
IF ERROR-STATUS:ERROR THEN
DO:
 DO ix = 1 TO ERROR-STATUS:NUM-MESSAGES: /* this will be 2 */
 MESSAGE ERROR-STATUS:GET-MESSAGE(ix) ERROR-STATUS:GET-NUMBER(ix).
 END.
END.

PROCEDURE proc:
 DEFINE VAR err AS PROGRESS.Lang.AppError.

 err = NEW PROGRESS.Lang.AppError("The car cannot be rented",1).
 err:AddMessage ("No driver's license was provided", 98).

 RETURN ERROR err.
END.

Raise ERROR to the caller of a user-defined function
The user-defined function, defined by the FUNCTION statement, returns a value of a specific data type as its
primary function. The RETURN statement is used in the function body to specify what value to return to the
caller. The RETURN ERROR statement is not used in the same way as it is in other blocks since it does not
raise ERROR in the caller. Instead, it sets the target variable of the function to the Unknown value (?).Therefore,
you can perform error checking on a function call by checking for the Unknown value (?). This technique only
works if the target variable has a value other than the Unknown value (?) before the function is called.

The following code demonstrates this behavior:

DEFINE VARIABLE iFuncReturn AS INTEGER INITIAL 99 NO-UNDO.

FUNCTION ErrorTest RETURNS INTEGER:
 RETURN ERROR.
END FUNCTION.

ASSIGN iFuncReturn = ErrorTest().

IF iFuncReturn EQ ? THEN
 DISPLAY "Error in user-defined function.".

51OpenEdge Development: ABL Error Handling: Version 12.2

Raise ERROR to the caller of a user-defined function

If you specify a string (RETURN ERROR <string>), the string is not seen as a RETURN-VALUE, but as the
value being returned from the function. Therefore, if the function is defined to return a type other than
CHARACTER, you get a compiler error (or a runtime error if the expression type is indeterminate at compile
time). If the function is defined to return a CHARACTER, the code runs, but RETURN-VALUE is not set. The
specified string is lost.

Structured error handling provides a more consistent and robust way to raise ERROR from user-defined functions
using the UNDO, THROW statement rather than RETURN ERROR. There are two ways to do this:

• Syntactically, you cannot use an ON ERROR phrase on a FUNCTION definition. Therefore, use the
ROUTINE-LEVEL ON ERROR UNDO, THROW (or BLOCK-LEVEL ON ERROR UNDO, THROW) statement
to set that directive on the function. Then any unexpected error, or explicitly thrown application errors, can
be thrown back to the caller. Just be aware that this affects all routines or blocks in the file.

• Add a CATCH block to the function. With a CATCH block, any error that is caught can be thrown out of the
function using the UNDO, THROW statement from within the CATCH block. If you only want to throw application
errors back to the caller but handle system errors locally, or vice versa, you can use multiple CATCH blocks
to accomplish this. Using multiple CATCH blocks is shown in the example below. To learn more, see CATCH
Blocks on page 57.

DEFINE VARIABLE iFuncReturn AS INTEGER INITIAL 99 NO-UNDO.

FUNCTION ErrorTest RETURNS INTEGER:
 IF CurrentTime > ClosingTime THEN
 UNDO, THROW NEW Progress.Lang.AppError("Can't take a delivery order
 after closing time.", 1).
 CATCH err AS Progress.Lang.AppError:
 UNDO, THROW err. // Let the caller know
 END.

 CATCH err AS Progress.Lang.SysError:
 // Unexpected error; handle it here
 MESSAGE err:GetMessage(1) VIEW-AS ALERT-BOX.
 END.

END FUNCTION.

iFuncReturn = ErrorTest() NO-ERROR.
IF ERROR-STATUS:ERROR THEN
 MESSAGE "Error message returned from function:" SKIP
 ERROR-STATUS:Get-Message(1).

Throw a condition out of a destructor
It is not possible to throw either an ERROR or STOP condition out of a class destructor.The destructor of a class
can run at unexpected times, at the end of any statement, or at an END block where variables go out of scope.
Therefore, you would not be able to effectively write code to handle any condition that was thrown out of the
destructor block. Because of this, the AVM forces the condition to be handled within the block itself. It can be
handled in all the usual ways, such as using an ON phrase (implicit or explicit) or by using a CATCH block.

Additionally, note that for destructors:

• Using ROUTINE-LEVEL ON ERROR UNDO, THROW or BLOCK-LEVEL ON ERROR UNDO, THROW, does
not affect the destructor block of a class.

• Using the UNDO, THROW statement in the CATCH or FINALLY block of a destructor results in a compiler
error because UNDO, THROW, in this context, would throw the condition out of the destructor block, which
is not allowed.You can, however, use UNDO, THROW in the body of the destructor itself. This raises the

OpenEdge Development: ABL Error Handling: Version 12.252

Chapter 6: Raise Conditions

condition within the context of the block and it can be handled either by default error handling or by a local
CATCH block.

• Using RETURN ERROR in the body of a destructor generates a compiler error.

• Unhandled STOP conditions normally propagate up by default. However this does not occur if the STOP
condition is initiated within the destructor block. Instead, any error message is displayed to the current output
device and the condition is cleared.

Raise the QUIT condition
The QUIT statement raises the QUIT condition.

Syntax

QUIT.

When the QUIT condition occurs, the AVM performs these steps by default:

1. Commits the current transaction.

2. Exits the ABL session.

3. For a client, if the application was started from the Procedure Editor or Progress Developer Studio for
OpenEdge, the AVM returns to that tool; otherwise it returns to the operating system. If running in an
application server, the AVM returns to the client session that called it.

If there is an ON QUIT phrase on the current block, that directive overrides the default behavior.

Raise the STOP condition
The STOP statement allows you to raise the STOP condition.

Syntax

STOP.

The STOP condition can be handled by the following constructs, in this order of precedence:

• An appropriate CATCH block

• An ON STOP phrase

• Default stop handling

53OpenEdge Development: ABL Error Handling: Version 12.2

Raise the QUIT condition

Raise a timed STOP condition
The STOP-AFTER phrase specifies a time-out value for a DO, FOR, or REPEAT block. This is the syntax in the
context of a DO block :

Syntax

DO ON ERROR UNDO, LEAVE STOP-AFTER expression:
 <body of the DO block>
END.

The integer expression specifies the number of seconds each iteration of a block has until a time-out occurs.
If a time-out occurs, the AVM raises the STOP condition.

This STOP condition can be handled like other STOP conditions (for example, by using an ON STOP phrase),
or it can be specifically handled by using a CATCH block for a Progress.Lang.StopAfter object. Specifically
handling the condition is the recommended approach since it is the only way to know that the STOP condition
was indeed raised by the STOP-AFTER and not by some other unexpected circumstance occurring within the
block.

For more information on using this feature, see the STOP-AFTER phrase on the DO, FOR, or REPEAT statements
in the ABL Reference.

Throw error and stop objects from an application server to an ABL
client

If an error is thrown out of a top level procedure of an application server (for example, by using RETURN ERROR
error-object-expression or UNDO, THROW error-object-expression), the error or stop object
being thrown is serialized and sent back to the ABL client. The client then deserializes the object and rethrows
it in the context of the RUN statement on the client. This functionality is subject to the same
serialization/deserialization restrictions as for any other object. The restrictions particularly relevant to error
and stop objects are as follows:

• In the case of a user-defined class, the object’s class and all the classes in its hierarchy must be marked
as SERIALIZABLE. For more information on marking a class SERIALIZABLE, see the CLASS statement
in the ABL Reference.

• .NET and ABL-extended .NET error objects cannot be thrown across the application server boundary.

• SoapFaultError objects can be thrown from an application server to an ABL client. However, the
handle-based object that the SoapFault property points to is not recreated during the deserialization of
the SoapFaultError object. It is set to the Unknown (?) value.

In the case of the first two items, if the application server code attempts to throw such an object, any message
from the object is written to the application server log. In addition, another error is raised to indicate that the
throw failed. That error message is also written to the application server log. An error condition is raised on the
RUN statement in the client.

OpenEdge Development: ABL Error Handling: Version 12.254

Chapter 6: Raise Conditions

Class-based error and stop objects can also be thrown from an OpenEdge application server to a client for an
asynchronous request. In that case, error and stop conditions will not be handled by a CATCH block as the
block containing the RUN statement may be long over. Instead, the information must be made available in the
PROCEDURE-COMPLETE event handler via attributes of the asynchronous request handle. Therefore, an error
object or Progress.Lang.StopError stop object is returned to the client and its reference provided as the
value of the ERROR-OBJECT attribute of the asynchronous request handle. Any other stop object (a
Progress.Lang.Stop or a subclass) is returned to the client and its reference provided as the value of the
STOP-OBJECT attribute of the asynchronous request handle. The ERROR-STATUS system handle's ERROR
attribute is also set.

55OpenEdge Development: ABL Error Handling: Version 12.2

Throw error and stop objects from an application server to an ABL client

OpenEdge Development: ABL Error Handling: Version 12.256

Chapter 6: Raise Conditions

7
CATCH Blocks

ABL provides CATCH blocks to enable you to trap an error or stop object and write code to handle the object.
This set of topics discuss CATCH block syntax, usage, error handling precedence, UNDO scope, and nested
CATCH blocks.

• Introduction to CATCH blocks on page 58

• CATCH block syntax and usage on page 59

• Blocks that support CATCH blocks on page 62

• Precedence of CATCH blocks on page 62

• UNDO scope and relationship to a CATCH block on page 63

• CATCH blocks within CATCH blocks on page 65

For details, see the following topics:

• Introduction to CATCH blocks

• CATCH block syntax and usage

• Blocks that support CATCH blocks

• Precedence of CATCH blocks

• UNDO scope and relationship to a CATCH block

• CATCH blocks within CATCH blocks

57OpenEdge Development: ABL Error Handling: Version 12.2

Introduction to CATCH blocks
A CATCH block can be referred to as an end block because it defines end-of-block processing for the block
that encloses it. End blocks are always part of another block called the associated block. End blocks must
appear in the associated block after the last executable statement and before the END statement. The other
type of end block is the FINALLY block that is discussed in later topics.

The CATCH statement defines the start of an end block that only executes if a condition is raised in its associated
block, and the type of condition raised is the type specified in the CATCH statement (or a subtype of that type).
For example:

DO TRANSACTION ON ERROR UNDO, THROW:

 FIND FIRST Customer WHERE CustNum=1000.
 RUN CreditCheck.p(Customer.CustNum).

 /* CATCH associated with DO TRANSACTION */
 CATCH eAppError AS Progress.Lang.AppError:
 MESSAGE "This customer is on Credit Hold.".
 END CATCH.
END.

/* CATCH associated with Procedure (Main) block */
CATCH eSysError AS Progress.Lang.SysError:
 MESSAGE "Customer record does not exist.".
END CATCH.

In this example:

• The THROW directive tells the AVM to propagate any unhandled errors to the procedure (main) block, since
it is the enclosing block of the DO TRANSACTION block. Notice there is a CATCH block waiting to handle
any Progress.Lang.AppError object that may be raised from the RUN statement. If a
Progress.Lang.AppError object is raised, the CATCH block handles the error and it is not passed to
the procedure block.

• When running the code, if the FIND statement fails, and there is no error handler present for this error type,
it raises a Progress.Lang.SysError. Since Progress.Lang.SysError is not handled, the AVM
throws the error up the call stack to the procedure block, due to the UNDO, THROW directive of the
TRANSACTION block. The AVM finds a compatible CATCH block on the procedure block and then executes
the code in the CATCH block.

• If you delete the CATCH block on the procedure block and run the example code, the AVM propagates the
Progress.Lang.SysError object to the main block as before. Since you no longer have an appropriate
error handler in the main block, the AVM now executes the default error handling behavior, which is to
display the system error message to the default output device.

The CATCH block executes once for each iteration of its associated block that raises a compatible error. A block
can have multiple CATCH blocks, and all must come at the end of the associated block.

There can only be one CATCH block for each specific condition type in a block. A CATCH block also handles
objects for its subtypes, so it is possible there can be more than one CATCH block that is compatible with a
particular condition. In this case, the AVM executes the first CATCH block it encounters that is compatible. For
this reason, CATCH blocks should be arranged from the most specific type to the most general. For example,
if you had different error handling code for Progress.Lang.SysError objects and
Progress.Lang.SoapFaultError objects, put the CATCH block for SoapFaultError objects first.
Otherwise, since SoapFaultError objects are a subtype of SysError, a CATCH block for SysError that
appears first would handle the SoapFaultError object.

OpenEdge Development: ABL Error Handling: Version 12.258

Chapter 7: CATCH Blocks

CATCH block syntax and usage

Syntax

CATCH object-variable AS [CLASS] condition-class:
 .
 .
 .

END [CATCH] .

object-variable

The variable name that references the object caught by this block. Typically, you do not define the
object-variable ahead of time with the DEFINE VARIABLE statement. The AVM recognizes a
new variable name on the CATCH statement as a new object-variable definition within the
current scope. Each CATCH in an associated block must have a unique object-variable.You
can reuse an object-variable name in a different associated block, if its type is the same as the
previous use. For all blocks with their own variable scope, such as object methods or internal
procedures, a CATCH statement inside that context may reuse the same variable name as a CATCH
statement outside of that context even if the type is different.

[CLASS] condition-class

Optionally, you can provide the CLASS keyword.

The code within a CATCH block only executes if a condition of type condition-class (or a subtype)
is raised within the body of the associated block. When the condition is raised, if there is an active
transaction for the associated block, the transaction is undone before the AVM begins executing the
statements within the CATCH block. For more information, see the reference entries for the DEFINE
VARIABLE statement and the TRANSACTION option in the DO statement in the ABL Reference.

Examples
Example 1

In the following example, the CATCH block handles any ABL system error:

DEFINE VARIABLE iCust AS INTEGER.

ASSIGN iCust = 5000.

FIND Customer WHERE CustNum = iCust. /* Will fail */

/* Won't execute because FIND fails */
MESSAGE "Customer found" VIEW-AS ALERT-BOX BUTTONS OK.

/* The associated block for this CATCH block is the main block of the .p */
CATCH eSysError AS Progress.Lang.SysError:
 MESSAGE "From CATCH block..." SKIP
 eSysError:GetMessage(1)
 VIEW-AS ALERT-BOX.
END CATCH.

59OpenEdge Development: ABL Error Handling: Version 12.2

CATCH block syntax and usage

Example 2

The following example illustrates reuse of the object-variable name:

DEFINE VARIABLE oneError AS CLASS Progress.Lang.SysError.
 /* This definition is not necessary. */

DO ON ERROR UNDO, LEAVE:
 FIND FIRST Customer WHERE CustNum = 5000.

 CATCH oneError AS Progress.Lang.SysError:
 MESSAGE oneError:GetMessage(1) VIEW-AS ALERT-BOX.
 END CATCH.

 CATCH twoError AS Progress.Lang.AppError:
 MESSAGE twoError:GetMessage(1) VIEW-AS ALERT-BOX.
 END CATCH.
END. /* FIRST DO */

DO ON ERROR UNDO, LEAVE:
 FIND FIRST Customer WHERE CustNum = 6000.

 /* You can reuse an error-variable from a different
 associated block as long as it’s the same type. */
 CATCH oneError AS Progress.Lang.SysError:
 MESSAGE oneError:GetMessage(1) VIEW-AS ALERT-BOX.
 END CATCH.

 /* NOT LEGAL: oneError was already used for a SysError,
 so it cannot be reused for an AppError. */
 CATCH oneError AS Progress.Lang.AppError:
 MESSAGE oneError:GetMessage(1) VIEW-AS ALERT-BOX.
 END CATCH.
END. /* SECOND DO */

PROCEDURE foo:
 FIND FIRST Customer WHERE CustNum = 7000.

 /* This IS LEGAL because a new oneError variable will be
 defined within the scope of this subprocedure so its
 type does not have to match. */
 CATCH oneError AS Progress.Lang.AppError:
 MESSAGE oneError:GetMessage(1) VIEW-AS ALERT-BOX.
 END CATCH.
END.

Example 3

OpenEdge Development: ABL Error Handling: Version 12.260

Chapter 7: CATCH Blocks

An associated block may have multiple CATCH blocks, each of which handles a different error class. If an error
type satisfies multiple CATCH statements, the AVM executes the code in the first CATCH block that is compatible
with the error type. It does not execute multiple CATCH blocks.Therefore, if multiple CATCH blocks are specified,
the more specialized error classes should come first, as shown:

FOR EACH Customer:

 < Code body of the associated block >

 /* This CATCH specifies the most specialized user-defined error class.
 It will catch only myAppError error objects or objects derived from
 myAppError. */

 CATCH eMyAppError AS Acme.Error.myAppError:
 /*Handler code for Acme.Error.myAppError condition. */
 END CATCH.

 /* This CATCH will handle Progress.Lang.AppError or any user-defined
 application error type, except for eMyAppError which is handled
 by the preceding CATCH block. */

 CATCH eAppError AS Progress.Lang.AppError:
 /* Handler code for AppError condition. */
 END CATCH.

 /* This CATCH will handle any error raised by an ABL statement.
 Since it is not in the class hierarchy of AppError, this CATCH
 could come before or after the CATCH for AppError */

 CATCH eSysError AS Progress.Lang.SysError:
 /* Handler code for SysError condition. */
 END CATCH.

 /* This is compatible with any condition object that
 implements the Progress.Lang.Error interface. All the
 above classes qualify, as well as a StopError object which
 is a SysError. So, in this context, this CATCH block will
 only run for a .NET Exception. */

 CATCH eError AS Progress.Lang.Error:
 /* Handler code for any error condition. */
 END CATCH.

END. /* Associated Block */

Example 4

The compiler issues a warning message if a block contains a CATCH block that is not reachable. The following
code produces a warning, since the CATCH of eMyAppError can never be reached:

FOR EACH Customer:
 /* Code body of the associated block */

 /* This will catch all application errors */

 CATCH eAppError AS Progress.Lang.AppError:
 /* Handler code for AppError condition */
 END CATCH.

 /* The following CATCH block will never execute, because
 myAppError is a subtype of Progress.Lang.AppError */

 CATCH eMyAppError AS Acme.Error.myAppError:
 /* Handler code for myAppError condition */
 END CATCH.

61OpenEdge Development: ABL Error Handling: Version 12.2

CATCH block syntax and usage

END. /* Associated Block */

Blocks that support CATCH blocks
The use of CATCH blocks is supported for all blocks that have error handling capabilities. CATCH cannot be
used in a simple DO or DO WHILE block (one with no options), since these do not have implicit error handling;
the compiler will not allow it. DO blocks must have an explicit TRANSACTION, ON ERROR UNDO, or ON STOP
directive, in order to have a CATCH block.

One or more CATCH blocks are positioned at the end of the associated block. If a FINALLY block is also used,
the CATCH block comes before the FINALLY block.This is the syntax for an associated block using end blocks:

Syntax

associated-block:
 .
 .
 .

[CATCH
 .
 .
 .

 END [CATCH] .]...
[FINALLY

 .
 .
 .

 END [FINALLY] .]
END. /* associated-block */

Precedence of CATCH blocks
In general, the AVM performs error handling using this precedence, from highest to lowest. The AVM only
abides by one of these when a condition is raised:

• Statement NO-ERROR option

• CATCH block

• Block’s ON phrase (explicit or implicit)

Using NO-ERROR on a statement prevents a CATCH block from running if the statement raises a condition.

Otherwise a CATCH block takes precedence over any flow of control directive on the block, for example, LEAVE
or THROW. See sections on Default Condition Handling on page 15 and Block Flow of Control and Condition
Directives on page 25, for more information on block condition directives.

OpenEdge Development: ABL Error Handling: Version 12.262

Chapter 7: CATCH Blocks

If there are CATCH blocks, but none of them are compatible with the type of condition that occurs, then the ON
phrase for the block takes effect. This could be an explicit or implicit (default) phrase for the block type, such
as ON ERROR or ON STOP. It can be useful to have both an explicit ON phrase for the associated block and a
CATCH on the same associated block.You might want to CATCH certain error types and handle them directly,
and have all other condition types handled by the ON phrase of the associated block.

UNDO scope and relationship to a CATCH block
Because the CATCH block only executes when ERROR or STOP is raised in the associated block, any transaction
within the associated block is already undone. In other words, changes made within the associated block to
persistent data, undo variables, and undo temp-table fields have been discarded. In addition, buffers scoped
to the associated block of the CATCH block are not available when the CATCH block executes. This is because
either the buffer was undone and released, or committed and released. If a buffer referenced in a CATCH block
is referenced outside of the associated block, then the scope of that buffer is the smallest enclosing block
outside of the associated block that encompasses all references to the buffer. Therefore, these buffers are
available to the CATCH block.

The CATCH block itself is an undoable block with implicit ON ERROR UNDO, THROW error handling.You cannot
explicitly override the ON ERROR directive for a CATCH block.

A statement that raises ERROR or STOP within a CATCH block causes the following to occur, unless the condition
is handled within the block:

1. UNDO the CATCH block if it contains a transaction.

2. LEAVE the associated block.

3. THROW the condition to the block enclosing the associated block, or to the caller if there is no outer block.

63OpenEdge Development: ABL Error Handling: Version 12.2

UNDO scope and relationship to a CATCH block

The following example demonstrates these availability rules:

/* Defines an undoable variable (the NO-UNDO option is not specified). */
DEFINE VARIABLE TargetCustNum AS INTEGER.

/* The last valid value before the beginning of the DO block */
ASSIGN TargetCustNum = 1.

/* This block is a transaction block because it makes updates to the database */
DO ON ERROR UNDO, LEAVE:

 /* This value is undone on ERROR. */
 ASSIGN TargetCustNum = 15.

 /* Find a Customer */
 FIND Customer WHERE Customer.CustNum = TargetCustNum.

 /* Here’s where we update the database. */
 ASSIGN Customer.Name = Customer.NAME + " And Much More".

 /* Confirm change to persistent field. */
 MESSAGE "Customer Name changed to: " Customer.Name
 VIEW-AS ALERT-BOX BUTTONS OK.

 /* ERROR raised. Control passes to CATCH block. */
 FIND Order OF Customer WHERE OrderNum = 1234.

 /* Statement does not execute. */
 DISPLAY Customer.CustNum SKIP
 Customer.Name SKIP
 OrderNum SKIP
 OrderStatus
 VIEW-AS TEXT WITH FRAME b SIDE-LABELS.

 CATCH eSysError AS Progress.Lang.SysError:

 /* Confirm if Customer record is available in CATCH.
 In this case it is not available because the customer
 record is released from the buffer when the associated
 block is undone, since it was never referenced in a
 higher block. */
 IF AVAILABLE (Customer) THEN DO:
 MESSAGE "Customer record is still available."
 VIEW-AS ALERT-BOX BUTTONS OK.
 END.
 ELSE DO:
 MESSAGE "No Customer record is currently available."
 VIEW-AS ALERT-BOX BUTTONS OK.

 /* Re-Find the Customer. Cannot rely on value of TargetCustNum! */
 FIND Customer WHERE Customer.CustNum = 15.

 /* Confirm that change to database field was not committed
 and UNDO variable was rolled back to 1. */
 MESSAGE "TargetCustNum = " TargetCustNum SKIP
 "Customer name is now: " Customer.Name
 VIEW-AS ALERT-BOX BUTTONS OK.
 END. /* ELSE */

 END CATCH.
END. /* DO */

OpenEdge Development: ABL Error Handling: Version 12.264

Chapter 7: CATCH Blocks

CATCH blocks within CATCH blocks
A CATCH block within a CATCH block only handles errors raised within the CATCH block. To prevent infinite
looping, any UNDO, THROW statement within the top-level CATCH block, or any CATCH block nested within it,
immediately throws the error to the block that encloses the associated block of the top-level CATCH block. For
example:

FOR EACH Customer:
 < FOR EACH code body >

 DO ON ERROR UNDO, LEAVE:
 < DO code body >

 CATCH eAppError AS Progress.Lang.AppError:
 < CATCH code body >

CATCH eSysError AS Progress.Lang.SysError:
 UNDO, THROW eSysError. /* Will be handled by CATCH
 anyError on FOR EACH... */
 END CATCH.
 END CATCH.
 END. /* DO */

 CATCH anyError AS Progress.Lang.Error:
 /* Handler code for anyError condition */
 END CATCH.

END. /* FOR EACH */

In this example, notice the UNDO, THROW statement within the nested CATCH block. If we get here, the AVM
passes control to the block enclosing the associated block and raises ERROR there. In this case, the DO block
is the associated block and the FOR EACH is the block enclosing the DO block. The CATCH anyError block
on the FOR EACH block then handles the error.

65OpenEdge Development: ABL Error Handling: Version 12.2

CATCH blocks within CATCH blocks

OpenEdge Development: ABL Error Handling: Version 12.266

Chapter 7: CATCH Blocks

8
FINALLY Blocks

A FINALLY block can be referred to as an end block because it defines end-of-block processing for the block
that encloses it. End blocks are always part of another block and that block is called the associated block. The
other type of end block is the CATCH block which is discussed in CATCH Blocks on page 57.

The purpose of a FINALLY block is to hold cleanup code that must execute regardless of what else executed
in the associated block. The FINALLY block may include code to delete dynamic objects, write to logs, close
outputs, and other routine, but necessary, tasks. A FINALLY block runs on each iteration of a block, even if
the iteration results in an ERROR or STOP condition.

For details, see the following topics:

• Introduction to FINALLY blocks

• FINALLY block syntax and usage

• UNDO scope and relationship to a FINALLY block

• Examples using FINALLY blocks

• FINALLY blocks and STOP-AFTER

• Conflicts between the associated and FINALLY blocks

Introduction to FINALLY blocks
The FINALLY statement creates an end block that executes once at the end of each iteration of its associated
block, regardless of whether the associated block executed successfully or raised a condition.

67OpenEdge Development: ABL Error Handling: Version 12.2

The FINALLY block executes after:

• Successful execution of the associated block.

• Each successful iteration of an iterating associated block.

• ERROR or STOP is raised in the associated block regardless of whether a CATCH block or ON phrase handles
the condition.

The FINALLY block does not execute if:

• A QUIT statement is in effect and it is not handled.

Since a FINALLY block executes after an invoked CATCH block, it can also be used to perform common
post-CATCH cleanup tasks, rather than repeating common code in all the CATCH blocks present in the associated
block.

FINALLY block syntax and usage
Here is the syntax for a FINALLY block:

FINALLY:
 .
 .
 .

END [FINALLY].

All ABL blocks, other than a simple DO or DO WHILE block (one without TRANSACTION or an ON phrase), can
have a FINALLY block.

There can only be one FINALLY block in any associated block. The FINALLY statement must come after all
other executable statements in the associated block and before the END statement. If the associated block
contains CATCH statements, the FINALLY block must come after all CATCH blocks. Note that the FINALLY
statement can be used in a block with no CATCH blocks.

UNDO scope and relationship to a FINALLY block
The transaction of the associated block is either complete (success) or undone (failure) when FINALLY executes.

Buffers scoped to the associated block of the FINALLY block are not available when the FINALLY block
executes. This is because either the buffer was undone and released, or committed and released.

If a buffer referenced in a FINALLY block is referenced outside of the associated block, then the scope of that
buffer is the smallest enclosing block outside of the associated block that encompasses all references to the
buffer. Therefore, these buffers are available to the FINALLY block.

The FINALLY block itself is an undoable block with implicit ON ERROR UNDO, THROW error handling.You
cannot explicitly override the ON ERROR directive for a FINALLY block.

A statement that raises ERROR or STOP within a FINALLY block causes the following to occur, unless the
condition is handled within the block:

OpenEdge Development: ABL Error Handling: Version 12.268

Chapter 8: FINALLY Blocks

1. UNDO the FINALLY block if it contains a transaction, which would be uncommon.

2. LEAVE the associated block.

3. THROW the condition to the block enclosing the associated block, or to the caller if there is no outer block.

Examples using FINALLY blocks
The examples that follow demonstrate common use cases for FINALLY blocks.

Example 1
In Example 1, the FINALLY block executes before any flow-of-control options (LEAVE, NEXT, RETRY, RETURN,
or THROW) are executed for the associated block. For iterating blocks, the FINALLY block executes after each
iteration of the block:

DO ON ERROR UNDO, LEAVE:
 FIND Customer WHERE CustNum = 1000. /* Raises ERROR and execution goes to
 FINALLY block before the LEAVE
 option executes */

 MESSAGE "This message never appears because of ERROR condition."
 VIEW-AS ALERT-BOX BUTTONS OK.

 FINALLY:
 MESSAGE "Inside FINALLY block."
 VIEW-AS ALERT-BOX BUTTONS OK.
 END FINALLY. /* LEAVE DO block here */

END. /* DO */

MESSAGE "Out of DO block." VIEW-AS ALERT-BOX BUTTONS OK.

If you run this code, you see the following messages:

** Customer record not on file (138)
Inside FINALLY block.
Out of DO block.

Example 2
In Example 2, after ERROR is raised, execution goes to the CATCH block and then to the FINALLY block.

DO ON ERROR UNDO, LEAVE:
 FIND Customer WHERE CustNum = 1000. /* Raises ERROR and execution goes to
 CATCH block. */

 MESSAGE "This message never appears because of ERROR condition."
 VIEW-AS ALERT-BOX BUTTONS OK.

 CATCH eSysError AS Progress.Lang.SysError:
 < Handler code for SysError condition >
 MESSAGE "Inside CATCH block." VIEW-AS ALERT-BOX BUTTONS OK.
 /* Execution goes to FINALLY before leaving DO block. */
 END CATCH.

 FINALLY:
 < Your code >

69OpenEdge Development: ABL Error Handling: Version 12.2

Examples using FINALLY blocks

 MESSAGE "Inside FINALLY block." VIEW-AS ALERT-BOX BUTTONS OK.
 /* LEAVE DO block here. */
 END FINALLY.

END. /* DO */

MESSAGE "Out of DO block." VIEW-AS ALERT-BOX BUTTONS OK.

If you run this code, you see the following messages:

Inside CATCH block.
Inside FINALLY block.
Out of DO block.

Example 3
In Example 3, after ERROR is raised, execution goes to the CATCH block, which rethrows the error.The FINALLY
block executes for the DO block before the ERROR is raised in the procedure block. The MESSAGE statement
there does not execute because of the raised error, but the outer FINALLY runs.

DO ON ERROR UNDO, LEAVE:
 FIND Customer 1000. /* Raises ERROR and execution goes to the CATCH block. */

 MESSAGE "This message never appears because of ERROR condition."
 VIEW-AS ALERT-BOX BUTTONS OK.

 CATCH eSysError AS Progress.Lang.SysError:
 < Handler code for SysError condition >
 MESSAGE "Inside CATCH block."
 VIEW-AS ALERT-BOX BUTTONS OK.
 /* Execution goes to FINALLY before leaving DO block. */
 UNDO, THROW eSysError.
 END CATCH.

 FINALLY:
 < Your code >
 MESSAGE "Inside inner FINALLY block."
 VIEW-AS ALERT-BOX BUTTONS OK.
 END FINALLY.

END. /* DO */

MESSAGE “This message never appears because of ERROR thrown from CATCH block."
<other code>

FINALLY:
 < Your code >
 MESSAGE "Inside outer FINALLY block."
 VIEW-AS ALERT-BOX BUTTONS OK.
END FINALLY.

If you run this code, you see the following messages:

Inside CATCH block.
Inside inner FINALLY block.
Inside outer FINALLY block.

OpenEdge Development: ABL Error Handling: Version 12.270

Chapter 8: FINALLY Blocks

FINALLY blocks and STOP-AFTER
If STOP is raised because of a STOP-AFTER phrase, a FINALLY block still runs, just like for any other
STOP-AFTER condition.

If a STOP-AFTER phrase is in effect, but has not timed out, the time it takes to run any FINALLY blocks is
incorporated into the time elapsed, as with any other code. However, if the FINALLY block is executing when
the time elapses, this does not raise a STOP condition. The FINALLY block, and any sub-blocks or routines
that it executes, run to completion. When the FINALLY block completes, if the associated block is the block
containing the STOP-AFTER phrase, whose time has elapsed, the STOP condition is not raised for that block,
since the block is already over. However, if the STOP-AFTER phrase is on an outer block, it is still in effect
when the FINALLY block completes. So now that the time has elapsed, the STOP condition is raised

If a STOP-AFTER phrase is used in the FINALLY block itself or in any sub-block, procedure, method, user-defined
function, or property accessor called from the FINALLY block, it is ignored.

Conflicts between the associated and FINALLY blocks
It is possible for a statement that ends a FINALLY block to conflict with a statement that ends the associated
block. In these scenarios the general rule is that the last action wins. The following examples illustrate some
of these cases:

ResultExample scenario

Returns 10 from the function or non-void method.The associated block of a function or non-void method
returns a value (for example, RETURN 5.) and then
the FINALLY block executes a conflicting RETURN
statement (for example, RETURN 10.).

Returns 10 from the function or non-void method rather
than raise the error.

The associated block raises an error to the outer block
or caller and then the FINALLY block returns a value
(for example, RETURN 10.).

Raises an error in the outer block or caller; thus the
original return value of 5 is lost.

The associated block returns a value (for example,
RETURN 5.) and then the FINALLY block throws an
error to the outer block or caller.

Best programming practices avoid these conflict scenarios. For example, there should only be one RETURN
statement to return a value for any code path. If there is a possibility that the FINALLY block can raise ERROR,
usually this is not as important as the original error from the associated block. Therefore, it is a good practice
to use a CATCH block or NO-ERROR in the FINALLY block to handle it, so the original error propagates up.

71OpenEdge Development: ABL Error Handling: Version 12.2

FINALLY blocks and STOP-AFTER

OpenEdge Development: ABL Error Handling: Version 12.272

Chapter 8: FINALLY Blocks

	Table of Contents
	Preface
	Introduction to Error and Condition Handling
	ABL conditions
	ABL condition handling
	Terminology

	Default Condition Handling
	Understand OpenEdge messages
	Progress messages (promsgs) file

	Understand the UNDO concept
	Branch options

	Usage of NO-ERROR
	NO-ERROR behavior
	Precedence of NO-ERROR
	Use NO-ERROR to trap a thrown object
	UNDO and scope using NO-ERROR
	Handle the error
	Handle warnings
	Incorrect use of NO-ERROR

	Block Flow of Control and Condition Directives
	ON phrase syntax
	Usage of labels
	Precedence of the ON phrase
	Examples using ON ERROR
	Use UNDO, THROW
	BLOCK-LEVEL ON ERROR UNDO, THROW statement
	ROUTINE-LEVEL ON ERROR UNDO, THROW statement
	-undothrow startup parameter
	Determine error-handling characteristics of r-code
	UNDO-THROW-SCOPE attribute
	XREF and XREF-XML output

	ON phrases and STOP conditions
	Throw error and stop objects from an application server to an ABL client

	ERROR and STOP Classes
	Progress.Lang.Error interface
	Progress.Lang.ProError class
	Progress.Lang.SysError class
	Progress.Lang.StopError class
	Progress.Lang.SoapFaultError class
	Progress.Lang.Stop class
	Progress.Lang.StopAfter class
	Progress.Lang.UserInterrupt class
	Progress.Lang.LockConflict class
	Progress.Lang.AppError class
	AppError Constructors

	.NET exceptions
	Enable stack tracing with error objects

	Raise Conditions
	Raise errors with UNDO, THROW
	RETURN ERROR
	Raise ERROR to the caller of a user-defined function
	Throw a condition out of a destructor
	Raise the QUIT condition
	Raise the STOP condition
	Raise a timed STOP condition
	Throw error and stop objects from an application server to an ABL client

	CATCH Blocks
	Introduction to CATCH blocks
	CATCH block syntax and usage
	Blocks that support CATCH blocks
	Precedence of CATCH blocks
	UNDO scope and relationship to a CATCH block
	CATCH blocks within CATCH blocks

	FINALLY Blocks
	Introduction to FINALLY blocks
	FINALLY block syntax and usage
	UNDO scope and relationship to a FINALLY block
	Examples using FINALLY blocks
	FINALLY blocks and STOP-AFTER
	Conflicts between the associated and FINALLY blocks

